
MCB 137 MICHAELIS-MENTEN KINETICS WINTER 2002

1

Lesson 6.   MICHAELIS-MENTEN KINETICS

Objective
1. To learn how to reduce the complexity of a system by separating “fast” and “slow” variables.
2. To model ‘saturating’ Michaelis-Menten kinetics.

Saturating kinetics
Many kinetic systems obey the same reaction scheme:

Enzyme kinetics:

† 

E + S
k1

æ Æ æ 
k-1

¨ æ æ ES k2æ Æ æ E + P (1)

Membrane Transport Carrier, C:

† 

Cmemb +Sin

k1
æ Æ æ 

k-1
¨ æ æ CmembS

k 2æ Æ æ Cmemb + Sout  (2)

Ligand-Receptor Binding: 

† 

R +S
k1

æ Æ æ 
k -1

¨ æ æ RS k2æ Æ æ Action (3)

All of these lead to the same rectangular hyperbola that describes Michaelis-Menten kinetics (c.f.
Appendix):

† 

Y =
YmaxS

KM + S where  Y = k2(ES) (4)

k2(ES) represents the velocity of the enzyme catalyzed reaction, rate of transport, or action of
drug/hormone. Ymax = the maximum value of Y, and Km = the value of S when Y = 1⁄2Ymax. The
equation and its properties are derived in most biochemistry texts1; the derivation is sketched in the
Appendix. The constant Km is given by

† 

K m =
k-1 + k2

k1
(5)

If we assume that the overall reaction rate is limited by the second reaction, i.e. the second reaction
is a bottleneck (i.e. k1 >>  k2) then

† 

K m =
k-1

k1
 (6)

i.e. Km is a dissociation constant: Km = krelease/kcapture. One can interpret Vmax/Km as an effective
rate of capture of substrate by the enzyme.2

                                                
1 See, for example: Stryer, L. (1995). Biochemistry. New York, W. H. Freeman. pp 192-195.
2 Northrop, D. (1998). On the meaning of Km and V/Km in enzyme kinetics. J. Chem. Edu. 75(9): 1153-1157.
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Exercises
Use Madonna to plot Equation (1) by writing the equation for Y directly into the Equation
Window and setting S = TIME. Use the BATCH mode so that you can plot several different
curves with different parameters. Start by holding Km constant at 10 mM for different values of
Ymax, and show that Y = Ymax/2 only when S = Km.

Next hold Ymax fixed at 10 and allow Km to vary. The higher the Km the slower the rise in Y—i.e.
the longer it takes to get half way. In fact, Km = Y1/2.

S Shaped (sigmoidal) Curves
The reaction

† 

nS + R
k1

æ Æ æ 
k-1

¨ æ æ SnR
k2æ Æ æ Action (7)

leads to

† 

Y =
YmaxSn

K m( )n
+ Sn (8)

Exercises
1. Plot this equation for different values of the parameters. Show that Ymax and Km retain the same

significance as before(Ymax = the maximum value of Y, and Km = the value of S when Y =
1⁄2Ymax), and that the larger the exponent, n, the larger the initial delay and the steeper the rise
once it starts.

2. An inhibitor reacts with the with a mediator (enzyme, carrier, or receptor) and deactivates it. This
reduces the total number of available mediators and leads to:

† 

Y =
YmaxK m

n

Km
n + Sn (9)

Plot this equation as before for different values of the parameters.. Show that Ymax and Km

retain their significance as before (Ymax = the maximum value of Y, and Km = the value of S
when Y = 1/2 Ymax), and that larger the n the larger the initial delay and the steeper the fall
once it starts.
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‘Stiff’ systems
One of the most important methods of simplifying a
complicated system is to separate the processes into
‘fast’ and ‘slow’ variables. The term arose from
mechanical systems  where ‘stiff’ springs respond
very fast, while weak springs respond much more
slowly. Then the displacement, z(t), can be broken into
an initial ‘fast’ regime, followed by a long-time
‘slow’ regime. In many situations, we don’t care
about the initial transient, but only on the long-time
behavior.  This is frequently the case in biochemical
systems, where some reactions  are fast and others are
slow. The classical example is the Michaelis-Menten
system, which we  study below.
Consider the simple system:

d/dt (X) = Y - 2*X,  INIT X = 1
d/dt (Y) = -100*(Y - X), INIT Y = 0
(10)

Y(t) settles to its final  value very fast, while X(t)
decays much more  slowly.

Exercise
Use the Rosenbrock “Stiff solver” with DT = 0.01
and DTMAX = 0.5 to solve the system (10).

Notice that y(t) rises very fast at the beginning (zoom in and see!), and thereafter changes slowly,
along with x(t). Suppose y changed so rapidly that it was always near its steady state: dy/dt = 0.
They you could solve the second equation for y = x and substitute it into the first equation for x, so
that it became dx/dt = -2x+x = -x. To see how good this approximation is, define a third variable, z
by dz/dt = -x and plot it along with x and y.
Now solve the same system using the Euler method. Turn on the data points with the button (•) and
see how many more steps Madonna has to take to get a solution.

Derivation of Michaelis-Menten Kinetics
Transformation of a substrate, S, into a product, P, by an enzyme, E, proceeds by first forming an
‘activated complex’ C which then dissociates (almost irreversibly) into free enzyme and product, P:
(Notation change: let C ≡ E⋅S denote the enzyme-substrate complex.)

† 

E +S
k1

æ Æ æ 
k -1

¨ æ æ æ C k 2æ Æ æ E + P
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These reactions can be written as the following set of differential equations:3

† 

dE
dt = k-1C + k2C - k1E ⋅S

dS
dt

= k-1C - k1E ⋅S

dC
dt

= k1E ⋅S- k-1C - k2C = k1E ⋅S- (k-1 + k2)C

dP
dt = k2C

(11)

An important common situation is when the enzyme, E, is saturated; i.e. it is working as fast as it
can, so that k-1 >>  k2, so that k2 is the ‘bottleneck’. Then the concentration of the E•S complex is
nearly constant, so that we can set dC/dt ª 0, and C can be eliminated so that the system reduces to
a single equation for the velocity of the reaction, V = -dS/dt:

† 

V = -
dS
dt = -

VmaxS
Km +S (12)

where 

† 

Vmax = k2E Total K m =
k-1 + k2

k1
. The function V = 

Vmax!S
Km!+!S  is the Michaelis-Menten

hyperbola. Km is the value of S when the velocity of the reaction is half its maximum, Vmax, and the
slope of the V(S) curve is Vmax/Km.

Exercise
Simulate the Michaelis-Menten equations (11) in Madonna using
k1 = 0.005,  k2 = 0.005, k3 = 0.1
INIT S = 100, INIT P = 0, INIT E = 10, INIT C = 0
First use the Euler method with DT < 0.01. Then switch  to the Rosenbrock  (stiff) solver with
DTMIN = 1e-6, DTMAX = 1, DTOUT = 0, and TOLERANCE = 1e-4. Use the Show Data button
(•) on the graph to compare how efficient this integration method is to the Euler and Runge-Kutta.
Use the Chemical Reaction Module (Menu: Model > Modules > Chemical Reactions…) to
simulate the Michaelis-Menten system.

                                                
3 Not all of the differential equations are independent: adding the first two equations yields: E + C = ETotal  (the total
amount of enzyme is constant). Also, the last equation for P(t) is completely determined once C is known.
Therefore, the four differential equations  (11) can be reduced to only two independent differential equations.


