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 VOLTAGE ACTIVATED CHANNELS

A. Background
An excitable nerve has voltage activated Na+ and K+
channels. We can no longer use the constant values
for gK and gNa we used in the last exercise on the
passive cells. We will begin with the axon model we
developed in the last exercise and patch in some
voltage activated K channels (slow K gates). The Na
channels will be dealt with later.
Hodgkin and Huxley assumed that the K conductance,
gK, is controlled by 4 independently operating charge
“gating charges”. In order for the channel to open
each of these charges must be in its correct
configuration. They assumed that the fraction of these
charges in the “open” state, denoted by n(t), followed
the equation:
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and that the conductance of the channels depended very nonlinearly on n:

gk = Gk·n4 (2)

where GK is the maximum K+ conductance (= 36 mmho/cm2). For now, we set this equal to a constant.
In general n will vary with both membrane potential (it is voltage activated) and time. Our immediate
problem is to specify how this happens).
To solve this equation we have to supply initial values for n as well as values for the constants an and
bn. Initial values for n are obtained by assuming that, prior to stimulation, the nerve has been in a steady
(resting) state with E = Er. In the resting state nothing is changing, including n; therefore, the rate of
production is equal to the rate of decay:

† 

ninitial =
an

an + bn( ) (3)

In general, the values of an and bn depend on E; values for an and bn corresponding to any particular E
are obtained from the following empirical equations:

an = 0.01 (E+55)/(1-exp(-(E+55)/10)) (4)
bn = 0.125*exp(-(E+65)/80)

This is how the voltage activation enters into the simulation. The correct values to use in the above
equation for the initial value of n correspond to E =Er. (This will automatically occur if you don't start
the stimulus at t = 0; i.e. make sure that ontime > 0.).



22

B. Procedure
1.  Begin by running your simulation for 8 msec with a dt = 0.03 msec. Use a square wave stimulus

with intensity =100, ontime =1, and offtime = 1.3. Plot the stimulus and membrane potential on the
same graph.

2.  Increase the size of the stimulus. Is there a threshold? Is the response “all or none”?

3.  Increase the intensity to 500, and include the number of open K channels (either n4 or gK) in your
plot. You can see from the plot how n4 or gK lags behind the stimulus; the K gates are slow to
respond. Following the stimulus, notice how E dips below its resting value only to return to it
several msec later. This same dip is seen in fully formed action potentials and is due to the slow
response of the K gates—they are not only slow in responding to a depolarization, they are also
slow in returning to their normal configuration once the depolarization is removed.

4.  Set the intensity to 500 and the duration (i.e. offtime - ontime) to 5 msec. Interpret the results.
You can modify the expression for gK in your simulation in the following way to make
it easier to take out or patch in the voltage activated K channels. Remembering that for
the passive axon gK = 0.425 mmho/cm2 (Table 1 of that exercise) we can write

gk  = Gk 0 Gk  n4 + 0.425(1 - Gk 0) (5)
Now by simply setting each GK 0 = 1 we simulate an axon with voltage activated K
channels present. With GK 0 = 0 we simulate an axon with passive (non voltage
activated ) K channels.

Voltage activated Na+ channel
Now we add voltage activated Na channels. These are more complex; each channel contains two gates, a
slow one and a fast one. Both gates have to be open simultaneously before Na can pass through one of
these channels. Na conductance is described by

gN a = GN a m3h (6)
where

GNa = maximal Na+ conductance = 120 mmho/cm2 (constant)
m3 = the fraction of the total number of fast Na gates that are open at any time.
h = the fraction of the total number of slow Na gates that are open at any time.
m3 and h vary between 0 and 1 and depend on both E and t. They accumulate as follows:

Rate of production Rate of decay

m am(1-m) bmm

h ah(1 - h) bhh

As in the case of the K channel, we have to supply initial values for m and h. as well as values for the
a's and b's. Initial values for m and h are obtained by assuming that, prior to stimulating, the nerve has
been in a steady (resting) state with E = Er. Therefore, the production rates of m and h are equal to their
decay rates . Using the Table above  to apply these criteria, we can solve for initial values as
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In general, the values of the a's and b's depend on E. Again, the correct values to use in the above
equations correspond to E =Er. and this will automatically occur if you don't start the stimulus at t = 0;
i.e. make sure that ontime > 0.
Values for a's and b's which reflect their change in E as it departs from Er are obtained from the
following :

ah = 0.07 exp(-(E+65)/20)
am = 0.1 (E+40)/( 1- exp(-(E+40)/10) )      (8)
bh = 1.0/(exp(-(E+35)/10)+1)
bm = 4.0 exp(-(E+65)/18)

Just as in the case of the K channels, you can modify the expression for gNa in your simulation to
make it simple to take out the voltage activated Na channels or patch them back in at your convenience.
Remembering that for the passive axon (Table 1 of that exercise) gNa = 0.0167 mmho/cm2, we can
write

gN a = GN a 0·GN a·m3h + 0.0167(1 - GN a 0) (9)
With GNa0 = 1, voltage activated Na channels are active; with GNa0 = 0, they are deactivated.

Stimulating the axon
Leaving both Na and K voltage activated channels in your model should be sufficient to reproduce most
of the excitation behavior of real axons.
5. As before, run your simulation for 8 msec with a dt = 0.03 msec. Use a square wave stimulus with
intensity =100, ontime =1, and offtime = 1.3. At first plot the stimulus and membrane potential on the
same graph.
6. Once you have succeeded in obtaining an action potential experiment with:

a. the intensity (e.g. reverse it)
b. the offtime
c. the shape of the stimulus (e.g. a ramp or an alternating current sine wave)
d. two stimuli in a row

7. See if you can reproduce some of the classical results described in your text books. E.g.
a. threshold
b. all or none behavior
c. refractory period
d. accommodation

8. You are now in a position to explore the details of nerve excitation in depth by plotting any of the
variables you choose. The Na+ and K+ currents yield the actual flow of these ions at each instant. The
conductances are a measure of the number of open channels at each moment. m3 is a measure of the
fraction of fast Na gates that are open, while h measures the fraction of slow gates. You can measure the
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actual amount of Na that moves in with each impulse and estimate how fast the Na pump would have to
operate to pump it back out during rest. You can mimic a TTX poisoned axon simply by reducing (or
abolishing) GNa.You can study the effects of hyperpolarization and find that at more negative resting
potentials, there are more Na channels available. You can replace the equilibrium potentials with
converters that calculate them in terms of ion concentrations (as in the passive cell exercise) and study
effects of changing ion concentrations on excitation.

Optional
Plot the parameters a and b as a function of E. Plot the steady state values of n, m, and h—given by
ax/(ax+bx.)—as a function of E and compare them in terms of opening or closing with depolarization (
E becoming more positive). The apparent time constants of n, m, and h are given by 1/(ax+bx.) Plot
these as a function of voltage and compare them in terms of fast and slow gates.
1.  Set Istim = 0 and plot the steady state E that results when Ko takes on values of 1, 5, 10, 50, 100,

and 200 mM. (Get the results from Madonna, but you will have to plot them yourself on graph
paper. Compare these results (on the same plot) with the results you would expect if the membrane
was permeable only to K.

2.  How do these results change if you increase gK by a factor of 10? If you decrease it by a factor of
10?

3.  Repeat a and b for Na+


