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MODELING THE CELL CYCLE 
Introduction 
One of the most exciting areas of current research in cell biology is the cell cycle. Finally, 
biologists are beginning to understand the mechanism that drives cells through their repetitive 
cycles of mitosis and cell division. Goldbetter (1991) has constructed a very simple model that 
reproduces some of the qualitative features of the cell cycle. The model is built around a chain of 
Michaelis-Menten reactions, and so it will give you an opportunity to investigate the 
consequences of concatenating simple kinetic schemes. The original reprint is  on the course web 
site. 

Model 
The protein cyclin is a key ingredient in the cell cycle. Its periodic buildup and breakdown in the 
cell parallels the cycle, and may actually drive it. When cyclin exceeds a certain threshold it 
begins to combine with and activate a protein kinase (called CDC2 kinase, not shown) to form a 
complex called “maturation promoting factor” (MPF), which appears to stimulate mitosis. The 
CDC2 kinase stimulates degradation of cyclin by activating a protease. Thus the system has a 
negative feedback: cyclin stimulates its own degradation via MPF and protease. Denote the 
concentration of cyclin by C, MPF by M, and protease by X. A diagram of the kinetic scheme is 
shown in Figure 1. 

 
  Figure 1. Model for oscillations in C, M, and X . 
Here M-P and X-P represent the phosphorylated (inactive) forms of the enzymes. Remembering 
that the enzymes are conserved: E + E-P = constant, we can write this scheme as a set of 
conservation equations of the form: Rate of reaction = Gain - Loss, where each term is a 

Michaelis-Menten hyperbola: 
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Here are the complete set of equations. 
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Table 1 gives some of the parameter values. 

Exercise 

1.  Fill in the missing entries in Table 1. 

2.  Use the Fourier Transform button to find the period and frequency 

3.  Plot the (C, M) phase plane using the parameters in Figure 4 of Goldbeter (1991). 

4.  Use the Parameter Plot to plot the frequency of oscillations in M vs. vd. Find the ‘bifurcation 
point’ where oscillations begin. Verify this by moving the vd slider. 
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Quantity Symbol Value & Units 

Maximum velocity of MPF activation VM1 3 

Maximum velocity of MPF inactivation V2 1.5 

 VM3 1 

 V4 0.5 

 Kc 0.5 

 Ki  (i = 1-4) 0.005 

 MT 4 

 νi 0.025 

 νd 0.25 µM/min 

 Kd 0.02 µM 

 kd 0.01 /min 

Initial concentration of cyclin C(0) 0.01 µM 

Initial concentration of MPF & Protease M(0), X(0) 0.01 

Table 1: The actual values of the maximum rates and Michaelis constants of the 
converter enzymes E1 and E2 are obtained by multiplying VM1, V2, K1, 
K2 by MT = 4µM. The parameters for the enzymes are obtained by 
multiplying VM3, V4, K3, K4 by XT = 4µM. 



CELL CYCLE 

4/4 

References 
Goldbeter, A. (1991). A minimal cascade model for the mitotic oscillator involving cyclin and 

cdc2 kinase. Proc Natl Acad Sci. 88:9107-11. 

Decroly, O.,  A. Goldbeter (1982). Birhythmicity, chaos, and other patterns of temporal self- 
organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. 79:6917-21. 

Goldbeter, A.,  D. Koshland (1981). An amplified sensitivity arising from covalent modification 
in  biological systems. Proc. Natl. Acad. Sci. 78:6840-44. 

Goldbeter, A.,  D. Koshland (1982). Sensitivity amplification in biochemical systems. Qrt. Rev. 
Biophys. 15:555-91. 

Goldbeter, A. (1995). “A model for circadian oscillations in the drosophila period protein 
(PER).” Proc. R. Soc. Lond. 261: 319-324. 

 A recent paper on circadian oscillations constructed with Madonna™. 

Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms. Cambridge, Cambridge 
University Press. 

A compendium of models on oscillatory phenomena in biology—most constructed with 
Madonna™. More recent models are more complicated 

Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. 2000. Kinetic analysis of a 
molecular model of the budding yeast cell cycle. Molecular Biology of the Cell 11(1):369-
391. 

Sveiczer A, Csikasz-Nagy A, Gyorffy B, Tyson JJ, Novak B. 2000. Modeling the fission yeast 
cell cycle: Quantized cycle times in wee1- cdc25DELTA mutant cells. Proceedings of the 
National Academy of Sciences of the United States of America 97(14):7865-7870. 

Circadian rhythms make good fodder for  modeling 

Tyson J., Hong C., Thron C., Novak B. 1999. A simple model of circadian rhythms based on 
dimerization and proteolysis of PER and TIM. Biophysical Journal 77(5):2411-2417. 


