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BIOCHEMICAL REGULATION 
In this chapter we study the ‘modules’ of biochemical regulation. Our treatment follows that of 
Tyson, et al. [1, 2]. These modules are components of biochemical control systems (“systems 
biology” is the current buzz word). Assembled into a biochemical circuit, they can represent 
many cellular processes. 

Signaling via covalent modification 
Many enzymes are regulated by attaching (via a kinase) or removing (via a phosphatase) a 

phosphate group: 

� 

E
Kinase⎯ → ⎯ ⎯ 

Phosphatase← ⎯ ⎯ ⎯ ⎯ EP . Generally, Kinases are very specific, while phosphatases 

are promiscuous. The activity of the kinase can be viewed as an input, or stimulus to the covalent 
‘switch’, and the amount of phosphorylated enzyme the output, or response. Figure 1a shows the 
kinetic circuit in the usual informal notation; Figure 1 shows the corresponding Madonna 
Flowchart.  

We can reduce the system to a single reservoir if we assume that the total amount of enzyme is 
constant, so that we can use as the only variable (reservoir) the amount of phosphorylated 

enzyme. That is, since E + EP = ET, the above reaction becomes 

� 

ET − EP
Kinase⎯ → ⎯ ⎯ 

Phosphatase← ⎯ ⎯ ⎯ ⎯ EP . Then 

the diagram in Figure 1a can be abbreviated as shown in Figure 1b.  

   
(a) 

   
(b) 

Figure 1. Diagramming covalent modification. (a) Diagram and Madonna Flowchart 
for the phosphorylation and dephosphorylation of the enzyme E. (b) 
Reduction of (a) to a single variable using the constraint E + Ep = ET = 
constant.  
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In keeping with the notion of stimulus-response behavior, let us switch notation and denote the 
rate of the kinase by S (the stimulus), and the amount of phosphorylated (active) enzyme by R 
(the response).1 This can be represented by the Flowchart shown in Figure 1b corresponding to 
the equation 

dR
dt

= k f RT − R( )− krR   
(1)

 

Exercise 1. Construct the Flowchart in Figure 1b and obtain the corresponding 
equation (1). Plot the solution using k1 = 1, k2 = 0.5, R(0) = 100, RT = 
200.  

Exercise 2. In a separate model, plot the curve dR/dt vs. R. (Hint: RENAME TIME = R, 
y = (k1*S*(RT - R)) - (k2*R), plot y vs. R and change the graph labels by 
clicking on the axes). It should look like Figure 2a. 

 
(a)    (b) 

Figure 2. Plotting the rate of a reservoir vs. its content shows whether the 
equilibrium (Rate = 0) is stable or unstable. (a) The simple linear 
system in Figure 1b. (c) A nonlinear system; e.g. dR/dt = aR(R−1)(R−2), 
where a is a tunable constant. This system shows ‘switch-l ike’ behavior. 

Signal-response behavior 
Linear 
An enzyme (the response, R) is synthesized at a basal rate k0 and degraded with a rate constant 
k2. Its production is enhanced by a rate k1S, where S is a synthetic enzyme. The system can be 
diagrammed as shown in Figure 3a. 

                                                
1 Of course, many enzymes are ‘normally on’ and are switched off by phosphorylation. However, the modeling 
proceeds exactly the same. 
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Figure 3. Linear stimulus-response system. (a) Flowchart. (b) Linear response curve: 
R(final) vs. S. 

Exercise 3.  Write out the equations for the Flowchart in ‘normal’ mathematical 
notation: dR / dt = f (R,S) , where R is the variable, and S is a parameter. 
Find the steady state value of the response, R by setting reservoir rate 
dR/dt = 0. Plot the time behavior and stimulus response behavior (Figure 
3b) using the parameter values k0 = 0.01, k1 = 1, k2 = 5, S = 10, R(0) = 
1. 

Hyperbolic 
The phosphorylation-dephosphorylation system discussed above is re-diagrammed in Figure 4. 
From the Flowchart, the equation governing the amount of phosphorylated enzyme (i.e. the  
reservoir, R) is: 

� 

dR
dt

= k1S(RT − R) − k2R    (2) 

Exercise 4. Plot the time and response behavior of the system using the parameter 
values k1 = k2 = 1, RT = 1, S = 1. Solve equation (2) for the steady state 
of the response, R, and show that the ‘Michaelis’ constant is k2/k1. 

  

Figure 4. Hyperbolic system. (a) Flowchart for MM. (b). Graph of (a) 

Zero-order ultrasensitivity 
In the above two examples the kinetics were governed by mass-action rate laws. A dramatically 
different behavior is obtained if the rates are governed by Michaelis-Menten kinetics. Figure 5 
shows the Flowchart for the phosphorylation-dephosphorylation system when the kinase and 
phosphatase obey MM kinetics. The stimulus-response behavior is sigmoidal, and very sharp 
(corresponding to a Hill coefficient of > 10). This behavior, first discovered by Goldbeter and 
Koshland [3] has been used to model a variety of biochemical systems [4, 5]. 
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Exercise 5. Reproduce the Flowchart, write the equations in mathematical notation, 
and plot the signal-response curve for the system in Figure 5. Use the 
parameters: RT = 3, k1 = k2 = 1, Km1 = 0.05, Km2 = 0.05, where the 
Km’s are the Michaelis constants for phosphorylation and 
dephosphorylation, respectively. 

 

 

 

 

 

Figure 5. (a) Flowchart for signal response system governed by Michaelis-Menten 
kinetics. The bottom panel shows the contents of the submodel obtained 
by grouping the model icons except for the stimulus, S, and the function 
Rp giving the value of the reservoir, R (dashed line: − − −). (b) The 
sigmoidal signal-response curve that resembles a high order of 
cooperativity.  

Biochemical feedback systems 
There are many kinds of feedback in biochemical systems, some direct, some indirect. Here we 
give several examples of positive and negative feedback modules. For example, the informal 
diagram in Figure 6 is a model by B. Goodwin for an oscillating genetic circuit [6]. From the 
diagram one can write the equations governing the system. 
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Figure 6. The Goodwin genetic oscillator. Solid lines are flows, dashed lines are 
signals (green = enhancers, red = inhibitors). The variable quantities 
(reservoirs) are black, and the parameters are blue. 

Exercise 6. See if you can convert the diagram in Figure 9 to equations, and a 
Berkeley Madonna Flowchart.  

Direct autocatalysis 
The simplest positive feedback is pure autocatalysis whereby a protein, A, catalyzes its own 
production. The Flowchart in Figure 7a shows this feedback. The production flow has the form 

dA/dt = kAn. The graph in  Figure 7b shows the explosive growth of A for n = 1.  

 
Figure 7. Simple autocatalysis. (a) Flowchart. (b) A(t) for k = 1, n = 1, A(0) = 1, 

Production = kAn.  
Exercise 7. Simulate the Flowchart using the parameters in the figure caption of 

Figure 7. For n ≥ 2, use the STIFF solver (Rosenbrock) and a slider for n 
and STOPTIME. You will have to reduce the STOPTIME for n ≥ 2 
considerably because the growth rate of A becomes much faster! 

Autocatalysis by inhibition of destruction 
The same autocatalytic step can be achieved by inhibiting the destruction or removal of a protein, 
as shown in Figure 8a.  

Exercise 8. Simulate the system in Figure 8a using the parameters in the figure 
caption. 
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Figure 8. Autocatalysis by removal inhibition. (a) Flowchart. (b) Plot of B vs. time 
using production (J2) = 1, removal (J3) = 1/(1 + B), B(0) = 1.  

Indirect autocatalysis 
Autocatalysis can arise when each of two chemicals enhance the production of the other (Figure 
9a). Autocatalysis can also arise by negative feedback via mutual inhibition of production, or by 
a mixed positive and negative feedback (Figure 9b). 

 

Figure 9. Indirect autocatalysis. (a) Positive feedback via mutual enhancement of 
production: J4 = 2D, J5 = C. (b) Autocatalysis can also arise by negative 
feedback via mutual inhibition of production: J4 = 1/(1 + 2D), J5 = 1/(1 
+ C). Madonna has no direct way to indicate whether the feedback 
enhances or inhibits the flow, but minus signs created by the Text tool 
can be placed adjacent to the parameter arrow to denote inhibition. 
Finally, autocatalysis can be achieved by a mixed positive (J5 = C) and 
negative (J4 = D/(1 + D)) feedback. 

Exercise 9. Simulate the unstable (unbounded increase) in C and D for the three 
types of feedback: positive, negative, and mixed. You can set all 
constants equal to unity and use the form 1/(1 + X) or X/(1 + X) as the 
inhibitory feedback functions. Make a plot showing the difference 
between those two forms. 

Adaptation 
Many—if not most—cellular sensory systems exhibit the property of adaptation: The activity of 
the response returns to its ‘basal’ level despite changes in the stimulus. An example is the run-
tumble frequency of E. coli. Raising the uniform level of a chemoattractant causes a transient 
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increase in tumble frequency that soon settles back to its original steady state before the 
attractant was added.  

A circuit for implementing perfect adaptation is shown in Figure 10a. This combines the simple 
linear response module with a signal pathway through an intermediate, X.  

 

Figure 10. Perfect adaptation. (a) Flowchart combining the linear response module 
for R with another linear response module for X through which the signal, 
S, is filtered. (b) Graph of the response, R, when the stimulus is a 
‘staircase’ function. Parameters are: k1 = k2 = 2, k3 = k4 = 1, X(0) = 0, 
R(0) = 1, S(0) = 0. 

Note: The staircase function can be constructed by making the stimulus, S, be a reservoir rather 
than a function, with an influx consisting of the PULSE function (see the Equation Help sheet 
under the Help menu). Define STAIR = PULSE(HEIGHT, INITIAL TIME, DURATION). 

Exercise 10. Construct the adaptation circuit shown in Figure 10a and reproduce the 
stimulus-response curve in Figure 10b.  

Oscillations 
Combining Michaelis-Menten kinetics with feedback can create 
a system with stable oscillatory behavior. We will study this 
phenomenon more thoroughly later; here we simply want to 
introduce the possibility of more complex dynamics when the 
modules we have constructed above are connected together.  

Exercise 11. Figure 11a shows the Flowchart (with the functions hidden) for 
negative feedback oscillator using the modules we have shown above and 
Michaelis-Menten kinetics. Reconstruct the model using the parameter 
values from the Equation window shown in Figure 11b. Plot a stimulus-
response curve for the frequency of oscillations as shown in Figure 11c. 
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d/dt (X) = + J1 - J2 
      INIT X = 5 
   d/dt (Yp) = + Yp_Production - Yp_Removal 
      INIT Yp = 0.9 
   d/dt (Rp) = - RP_Removal + Rp_Production 
      INIT Rp = 0.1 
 
   Rp_Production = k5*YP*(RT-RP)/(Km5+RT-RP) 
   RP_Removal = k6*RP/(Km6+RP) 
   Yp_Production = k3*X*(YT-YP)/(Km3+YT-YP) 
   Yp_Removal = k4*YP/(Km4+YP) 
   J1 = k0 + k1*S 
   J2 = k2*X + k2p*RP*X 
 

 
   RT = 1 
   k5 = 0.1 
   k6 = 0.05 
   Km5 = 0.01 
   Km6 = 0.01 
   YT = 1 
   k3 = 0.1 
   Km3 = 0.01 
   k4 = 0.2 
   Km4 = 0.01 
   k0 = 0 
   k1 = 1 
   S = 2 
   k2 = 0.01 
   k2p = 10 

 

Figure 11. Negative feedback oscillator. (a) Flowchart with the functions hidden. (b) 
Equation window. (c) Response (Rp) vs. Stimulus (S). 
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Toggle switches have also been realized in artificial

genetic networks based on mutual inhibition [41] or

mutual activation [42�]. These networks were designed

and built in explicit reliance on theoretical ideas of the

kind we have described.

Negative feedback: homeostasis and
oscillations
In negative feedback, the response counteracts the effect

of the stimulus. In Figure 1g, the response element, R,

inhibits the enzyme catalysing its synthesis; hence, the

rate of production of R is a sigmoidal decreasing function

of R. The signal in this case is the demand for R — that is,

the rate of consumption of R is given by k2SR. The steady

state concentration of R is confined to a narrow window

for a broad range of signal strengths, because the supply of

R adjusts to its demand. This type of regulation, com-

monly employed in biosynthetic pathways, is called

homeostasis. It is a kind of imperfect adaptation, but it

is not a sniffer because stepwise increases in S do not

generate transient changes in R.

Negative feedback can also create an oscillatory response.

A two-component, negative feedback loop, X!R—|X,

can exhibit damped oscillations to a stable steady state

but not sustained oscillations [43]. Sustained oscillations

require at least three components: X!Y!R––|X. The

third component (Y) introduces a time delay in the feed-

back loop, causing the control system repeatedly to over-

shoot and undershoot its steady state.

In Figure 2a (column 1), we present a wiring diagram for a

negative-feedback control loop. For intermediate signal

strengths, the system executes sustained oscillations

(column 2) in the variables X(t), YP(t) and RP(t). In the

signal-response curve (column 3), we plot RP;ss as a

function of S, noting that the steady-state response is

unstable for Scrit1 < S < Scrit2. Within this range, RP(t)

Figure 2
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Transcription regulation and signaling networks are composed of recurring patterns called network motifs. Network motifs are much more prevalent in biological networks than 
would be expected by comparison to random networks and comprise almost the entire network structure. The same small set of network motifs has been found in diverse organ-
isms ranging from bacteria to plants to humans. Experiments show that each network motif can carry out specific dynamic functions in the computation done by the cell. Here 
we review the main classes of network motifs and their biological functions.

Autoregulation
Negative autoregulation (NAR) occurs when a transcription factor represses the transcription of its own gene. (We use transcription to help make examples concrete; all circuits 
described here could operate also in other regulatory modes, e.g., a protein inhibiting its own activity by autophosphorylation.) This occurs in about half of the repressors in 
E. coli and can speed up the response time of gene circuits and reduce cell–cell variation in protein levels that are due to fluctuations in production rate. Positive autoregulation 
occurs when a transcription factor enhances its own rate of production. Response times are slowed and variation is usually enhanced. This motif, given sufficient cooperativity, 
can lead to bimodal (all-or-none) distributions, where the concentration of X is low in some cells but high in others.

Cascades
Cascades of gene expression create sequential activation of genes. The downstream gene is activated when its regulator reaches the relevant threshold. Using negative regula-
tion, the genes can be sequentially activated and repressed.

Positive-Feedback Loops
Developmental transcription networks often use positive-feedback loops that are made of two transcription factors that regulate each other. The double-negative loop, in which 
two repressors repress each other, has two steady states: X is ON and Y is OFF, or the opposite. In the double-positive loop, either both X and Y are OFF, or both are ON. In 
either case, a transient signal can cause the loop to lock irreversibly into a steady state, providing memory of an input signal. Often, X and Y also positively regulate themselves. 
In a regulated feedback loop, an upstream regulator Z regulates X and Y, which locks the feedback loop into one of its steady states. Triads of mutually activating transcription 
factors are also common network motifs.

Feedforward Loops (FFLs)
The feedforward loop (FFL) appears in hundreds of gene systems in E. coli and yeast as well as in other organisms. This motif consists of a regulator, X, which regulates Y and 
Z, where Y also regulates Z. Because each of the three interactions in the FFL can be either activation or repression, there are eight possible structural types of FFLs. X and Y 
combine to regulate Z, often approximately as AND or OR gates. The two most common FFLs are the coherent type 1 FFL (C1-FFL) and the incoherent type 1 FFL (I1-FFL). The 
C1-FFL with an “AND” gate is a “sign-sensitive delay” element and a persistence detector. The I1-FFL is a pulse generator and response accelerator. For a range of parameters, 
the I1-FFL can also act as a fold-change detector, where the response dynamics depend only on the fold-change (rather than absolute change) of the input signal.

Single-Input Module (SIM)
In single-input modules, a regulator X regulates a group of target genes (typically X also regulates itself). This motif allows coordinated expression of genes with a shared function 
and can generate a temporal expression program, with a defined order of activation or repression of each of the target promoters. Stochastic pulses of X can provide proportional 
control according to the pulse frequency (as in CRZ1 in yeast).

Negative-Feedback Loops
Negative-feedback loops between two genes or proteins are often made up of interactions that take place on different timescales. For example, X can slowly activate Y, which in 
turn quickly inhibits X (for instance, slow transcriptional activation and rapid inhibition by degradation). This circuit can create oscillations. A symmetrically opposed motif, with 
fast activation and slow negative feedback, can generate noise-driven excitable pulses.

Integrated FFLs
FFLs may be combined into larger integrated structures and more complex transcription circuits. For example, integrated coherent and incoherent FFLs generate temporal 
waves of gene expression during the sporulation process of B. subtilis.

Integrated Motifs and Dense Overlapping Regulons (DORs)
Dense overlapping regulons are sets of regulators that combinatorially control a set of output genes. The DOR can be thought of as a gate-array, carrying out a computation by 
which multiple inputs are translated into multiple outputs.

Network motifs combine to form the global structure of the network. In the example shown, viewing an image of the network using symbols to denote the different motifs helps 
to portray the network in a compact way.  Note that FFLs and SIMs are integrated into DORs. Usually the DORs occur in a single layer, thus most computations are carried out 
in a single “cortex.” Developmental networks can have deeper layers of cascades.
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