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Neurobiology 1
Introduction
This chapter begins with Hodgkin and Huxley’s Nobel Prize winning model for the squid axon.
Although published over 50 years ago, their model remains today the paradigm in cellular
neurobiology(Hodgkin and Huxley 1952). The model simulates an axon excised from a squid and
subjected to experiments such as applying stimuli or clamps, exposure to drugs or changes in
temperature. The model can be used to design experiments to explore a variety of nerve
properties, ranging from the classical phenomena of threshold, summation, refractory period, and
impulse propagation to more modern concepts of channels, gates, and even molecular events. In
addition to faithfully predicting a wide variety of laboratory results, the model provides insight
into mechanisms of excitation in a way that is not practical with lab experimentation. The latter
portion of the chapter is devoted to updating the model, bringing it more in line with modern
views of ion channel structure and function.

Axon excitation is characterized by threshold, all-or-none, and
refractory period

If a nerve is stimulated with weak electrical shocks there is a local disturbance but a propagated
action potential does not occur. As the stimulus intensity is raised the local disturbance increases
until, at a critical intensity, or threshold, an action potential is triggered that propagates along
the length of the nerve axon. The amplitude of the action potential is much larger than the local
stimulus, and its amplitude does not diminish as it travels along the length of the axon. Further
increasing the stimulus strength does not increase the size of the propagated action potential.
This is behavior is called all−or−none. A recovery phase follows excitation during which the
axon is not excitable; this is called the refractory period.

Building the HH model I: The passive axon
The behavior of nerve axons arise from the properties of voltage activated Na+ and K+ channels
that span the bilayer membrane. Modeling these characteristics is complex, so we begin with a
simpler case: we model the electrical properties of a membrane with channels that are not voltage
activated. This can be approximated in the laboratory by applying the toxic agents, tetrodotoxin
(TTX) and tetraethylammonium (TEA), to block voltage activated sodium and potassium
channels, respectively.

Membrane capacitance is a measure of the ‘capacity of the
membrane to contain charge

The passive axon model deals with a basic question: How to describe the movements of diffusing
ions within an electric field? The electric field can be defined as the force on a unit positive
charge. In a membrane, the field is proportional to the more easily measured voltage difference, or
membrane potential, across the membrane. The electric field and the membrane potential arise
because the membrane is polarized: a net negative charge lines the inner surface and an equal
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opposite net positive charge lines the outer surface. The relation between the membrane
potential, Vm, and the net charge, Q, is simple: as illustrated in Figure 1, Vm is proportional to Q.
The reciprocal of the proportionality constant is called the membrane capacitance, Cm.

Equation 1

€ 

Vm[volts] =
Q[Coulombs /cm2]
Cm[ farads /cm

2]
, or Q = Cm⋅Vm

Cm measures the capacity of the membrane to hold charge  on its surfaces. Thus it is analogous to
‘volume’, which is the capacity of a container to hold mass. If we divide Q by Cm, we obtain an
intensive ‘driving force’ Vm, just as we divide mass by volume to obtain an intensive ‘driving
force’, concentration.

Figure 1. The charge a membrane accumulates on its surfaces is proportional to the voltage
imposed across the membrane: Q = Cm⋅ΔVm. The proportionality constant is called
the membrane capacitance.

The electrical stimulus is delivered uniformly to the entire
membrane surface

Our task is to compute the accumulation of net positive charge, Q, on the inner surface of the cell
membrane after applying a stimulating current, Istim, or after changing the concentrations or

conductances of ions. The membrane potential, Vm, is then calculated from Equation 1.

For simplicity we assume that the electrical stimulus is delivered uniformly to the entire
membrane surface. This can be accomplished by using a long axial electrode as shown in Figure 2.
Uniform stimulation eliminates any spatial dependence and allows us to focus entirely on time as
the independent variable.
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Figure 2. The axon is stimulated uniformly by running the stimulating electrodes along the
length of the axon, a common experimental design.

A generic model for passive current flow across cell membranes

The model illustrated in Figure 3 shows a reservoir of charge Q on its inner surface (the charge on
the outer surface is simply –Q). The stimulus, Istim, represents a current of positive charge
flowing into the cell through the stimulating electrodes while the membrane current, Im, consists
of positive charges carried out of the cell by Na+ and K+. A small amount of additional charge
moves with these ions, and is collectively represented by a leakage  current. The membrane
potential, Vm = Q/Cm, is the driving force for the flow of the three classes of ions. Computations
for the three membrane currents are placed in separate windows (sub programs) labeled Na
Current, K Current and Leak Current. Let Vr denote the resting membrane potential; we
compute the initial value for Q by inserting into the dialog of the Q icon

Equation 2

€ 

Q =
Vr

Cm

at time = 0

Since the concentrations of Na+, K+ and other ions are not equal on the two sides of a cell
membrane, they tend to diffuse. Since the ions carry an electric charge  they also drift in response
to electric fields generated by any charge separation. How can movements of diffusing ions
within an electric field be described? We begin by taking up the simplest case: equilibrium.
Subsequently, ion currents will be described as a response to the departure from equilibrium.
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Figure 3 (a) Model for the flow of Na+ and K+ currents across a cell membrane.  Submodels
for Na+ (b), K+ (c), and leakage (d) currents.

Equilibrium membrane potentials reflect ion concentration
gradients

Consider the case where a membrane, impermeable to ions, separates a concentrated and a dilute
solution of KCl. Since each solution contains an equal number of positive and negative charges,
they are electrically neutral, so there is no electrical potential difference between the two (Vm =
0). Now patch in some channels that are permeable to K+ but not permeable to Cl

−
 (e.g.

gramicidin) , shown in Figure 4a. K+ will begin to diffuse from the concentrated (inside) to the
dilute (outside) side.
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Figure 4 (a) K+ channels are patched into a lipid bilayer membrane that separates two KCl
solutions. The solution on the left (inside) is more concentrated. (b) K+ diffusion
separates charge. (c) Equilibrium: Diffusion drift is balanced by electrical retardation

As each K+ ion moves across the membrane it delivers a positive charge to the dilute solution
outside and leaves an uncompensated negative Cl− ion behind on the inside. This makes it more
difficult for the next K+ to move across to the right because it is repelled by the excess (+) ions
on to the right and attracted to the excess (−) ions on the left (Figure 4b). In other words, an
electrical force opposing the diffusion begins to build up, that is reflected in a membrane potential
with the concentrated solution negative .

The more ions that diffuse through the channels, the more polarized the membrane becomes
(because of the separation of positive and negative charges), and the larger becomes the retarding
electrical force. Finally, the electric force (E arrow in Figure 4c) is just equal and opposite to the
concentration gradient (K+ arrow). At this point, the tendency for K+ ions to diffuse from left to
right is balanced by the tendency of K ions to drift from right to left due to electrical forces, and
the K+ ion is in equilibrium. The magnitude of the equilibrium membrane potential is called the
equilibrium potential for K+, or VK. This equilibrium state is attained very rapidly because
very few ions have to move to produce large electrical forces. The polarizing ions (i.e. those that
are in excess on either side of the membrane) are confined to a narrow layer less than 10 nm thick
adjacent to the membrane. Beyond this thin layer, the bulk solutions on either side of the
membrane are electrically neutral.

The larger the concentration difference between the two solutions, the larger the equilibrium
potential. In a way it is an electrical measure of the concentration ‘force’, and it is important for
our purposes because it allows a meaningful comparison of the actual electrical force with the
concentration ‘force’. The equilibrium potential, VK, for potassium is determined by the ionic
concentrations inside and outside of a cell as (see the Appendix)

Equation 3

€ 

VK =Vin −Vout = −
RT
F
ln Kin

Kout

where Vin, Vout, Kin, Kout are the electrical potential and K+ concentration on the inside and outside.
R, T, and F are the gas constant, absolute temperature, and Faraday constant, respectively.
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Each ion species will be present at different concentrations and so will require a different value
for Vm if they are if they are to be held in equilibrium. The equilibrium potential for Na+ has the
same form, but with Na+ replacing K+:

Equation 4

€ 

VNa =Vin −Vout = −
RT
F
ln Nin

+

Naout
+

Ionic currents are proportional to their departure from equilibrium

Using typical concentrations inside and outside squid axons in Equation 3 and Equation 4, we
arrive at VK = −77 and VNa = 50 mV. Neither ion is normally in equilibrium, so the actual
membrane potential, Vm, is neither of these. The difference Vm − VK is a measure of the departure
of K+ from its equilibrium state and we assume that its flow is proportional to this departure, i.e.

Equation 5

€ 

IK = gK (Vm −VK )

where IK denotes the potassium current and gK is a proportionality constant called the potassium
conductance. The flow of potassium ions, denoted by JK, can be measured in moles/sec/cm−2, but
here we describe it by the flow of positive charge that it carries, i.e. the potassium current, IK.

The two flows are related by the Faraday constant (96,487 Coulombs.mol−1) i.e.

Equation 6

€ 

IK [amp ⋅ cm
−2] = F[Coulombs ⋅mol−1] ⋅ JK [mol ⋅ sec

−1⋅ cm−2]

Applying the same arguments to the other ions, we have

 Equation 7

€ 

INa = gNa (Vm −VNa )

 Equation 8

€ 

IL = gL (Vm −VL )

where gNa and gL are the sodium and ‘leak’ ion conductances. The conductances (= 1/resistance)
are proportional to the number of channels available to that ion species. Equation 5, Equation 7,
and  Equation 8 are written in accordance with the convention that positive current is defined as
positive charge moving out of the cell.

Electrical stimuli deliver positive charge to the inner membrane
surface

In addition to ion currents, an experimenter may impose a stimulating
flow of positive charge into the cell. If this imposed current has the
form of a square wave, it has the form:

Equation 9 Istim = Intensity*SQUAREPULSE(on time, duration)

SQUAREPULSE is either 0 or 1, so that the Intensity specifies the
height of the pulse. The off time is not specified, instead the duration
of the pulse is required.



NEUROBIOLOGY 1

-7-

BEGIN BOX________________________________________________________________

Q[nCoul], Vm[mV], Cm[µf], I[µamps], g[mmho] and time[msec] form a
consistent set of practical units

Consider a patch of membrane with  area = 1cm 2. From Equation 1,  Q [Coul] = C [farads].V
[volts]. But, farads and volts are much too large to be convenient in physiology, so we use
microfarads [µf] and millivolts [mV] instead. However, if we measure Cm in µf and Vm in mV,
then we must use Q in nano-Coulombs (1 nCoul = 10-9 Coul) because, after substituting 1V = 103

mV and 1 farad = 106 µfarads into the above, we find

Coul = 106 µfarads.103 mV = 109
 µfarads.mV

10-9
 Coul = nCoul = µfarads.mV

Thus a consistent set of units is:

Q [nCoul] = C [µf].V [mV]

If we measure time in msec, then current will be in

nCoul.msec-1 = µCoul.sec-1 = µamp

Even though the ‘real’ units, nCoul⋅msec-1, define the time scale for the model, it is conventional
to refer to current units by its more conventional equivalent, µamps.

Conductance is defined by Ohms law:

I [Coul⋅sec-1] = g [mho].Vm [volt],

where the conductance, g [mho] = 1/resistance [ohm]. If we use the units current (µamps) and time
(msec), then

amps = 106 µ amps = mho.volts = mho.103 mV

µ amps = 10-6 (mho.103 mV) = 10-3 mho.mV = mmho.mV

So, the units of conductance are mmho .

END BOX __________________________________________________________________

Building the passive axon model

In the passive axon model, the conductance of each ion remains constant; i.e. it does not depend
on voltage and it does not change with time. Using the data in Table 1 together with the model of
Figure 3:
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1. Simulate the response of the membrane potential Vm when you stimulate the cell with a
square wave of 100 µamps with a 10 msec. duration. An easy way to set up the submodels is
to create a formula icon (round ball) for each of the three currents IK, INa, and IL. Connect an
arrow from Vm to each of these icons and other arrows from the icons to Imemb. Now, for
example, select IK and then select the menu item Flowchart >Group, and label the submodel
icon IK_.  Open the submodel window, create formula icons for VK and gK , and complete the
submodel flowchart for IK. Do the same for the other currents, and insert Vr / Cm for the initial
value of Q. When the model is compete, run it and plot Vm and Istim vs. time. Note that the
system is linear: it’s flow depends only on the first power of Vm. The cell responds with a
single time constant. What is its magnitude? Is the response all or none? Is there a threshold?

2. Illustrate the sensitivity of the system (speed of response and final steady state resting
potential) when you change the parameters listed below. An easy way to do this is to use the
Batch Runs command. Begin by making simultaneous plots of 0.1, 1. 5, and 25 times the
normal value given in the table for each parameter. This can be done by choosing Geometric
Series and setting the maximum and minimum values for the specific parameter you are
investigating. As you see your results you may want to change these values to illustrate some
particular point. Parameters to change are the membrane capacity, Cm, and the number of
open sodium and potassium channels, gNa and gK.

3. Set Istim = 0 and assume that by some means the resting potential has been set to zero (Vm =

0 at time = 0); i.e. the membrane has been ‘short circuited’. Suddenly the short is removed and
the membrane is allowed to charge up to its normal resting potential.

3-1  Simulate the time course of this experiment.

3-2   Show that no matter where you place the initial value of the membrane charge (and
corresponding membrane potential) the potential always returns to the same value.

3-3  Show that changing the capacitance Cm will change the speed of response but will not
effect the final value. How does the speed of response (increase/decrease) when Cm
increases?

3-4  Show that changing the conductances in the same proportion (i.e. increase all of them by
a factor of 10x) will also change the speed of response but will not effect the final value.
How does the speed of response (increase/decrease) when conductances increases?

3-5  Compare the amounts of charge carried by Na+, K+, and L+ required to charge up the
membrane. You can accomplish this by placing a connecting a new flow to a new
reservoir for each ion in its current submodel window.

3-6  How much charge in Coulombs moved in to accomplish this? Using the Faraday
constant, translate this into moles of positive ions.

Save the model! You will use it to patch in voltage activated channels and simulate nerve
excitation.
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QUANTITY SYMBOL UNITS VALUE

membrane capacity Cm µfarad/cm2 1

Equilibrium potential for K+ VK mV −77

Equilibrium potential for Na+ VNa mV 50

Equilibrium potential for L+ V L mV −54.4

resting potential Vr mV −65

K+ conductance gK mmho/cm2 0.425

Na+ conductance gNa mmho/cm2 0.0167

leakage conductance gL mmho/cm2 0.3 mmho/cm2

Table 1. Data for the passive axon

Building the HH Model II: Voltage Activated Channels
Models for voltage activated channels generally assume that proteins forming the channel undergo
conformational changes when subjected to strong electrical fields. Some conformations create
open channels permitting specific ions to pass through the membrane while others are closed. A
common metaphor visualizes channels as canals containing charged gates that open or close when
electric fields change (see Figure 5). The reality is much more complicated, but this simple picture
will suffice for our model. Hodgkin and Huxley had little idea of what the ion channels looked
like; today we know much more (Berg, Tymoczko and Stryer 2002), but their model is still an
accurate description of the dynamics.

Figure 5 Closed channel with 4 gates, one open, three closed. The channel is open only when
all four gates are open.

Single gate channels are not sufficient

We begin our analysis with the simplest case, a population of K+ channels that contain a single
gate. Our goal is to compute the fraction, n, of these channels that are open at any time. The first
stage of the model is shown in Figure 6, where the reservoir is the variable n. The rate of open
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channel formation, Ropen, is proportional to the fraction of closed channels (an open channel can
only be formed from a closed channel), but the fraction of closed channels is equal to 1 – n .
Therefore,

Equation 10

€ 

Ropen = an ⋅ 1− n( )

 where an is a rate constant. Similarly, the rate of closed channel formation, Rclose, is proportional
to the fraction, n, of open channels. With bn denoting the rate constant for closing, we have

Equation 11

€ 

Rclose = bn ⋅ n

Figure 6 Model for a channel gate: 

€ 

nopen
a →  
b←   nclosed

The initial condition for n at rest (n not changing and Vm = Vr) is given by the steady state
condition Ropen=Rclosed:

Equation 12

€ 

ninitial =
an

an + bn
at Vm =Vr  

€ 

The dependence of the initial condition on the rate constants requires the additional arcs from an

and bn to n shown in Figure 6. Note that n ranges from 0 to 1 and can be viewed as the probability
of finding an open gate.

Thermal fluctuations cause individual gates to open and close randomly. The rates of these
open↔close transitions will depend on the electrical field that changes the energy level of the
gate and/or lowers the activation energy required for a transition. This dependence is indicated in
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Figure 6 by the arcs linking an and bn to the membrane potential Vm (see Equation 15 for the
explicit dependence). Finally, n is connected to gK using the relation: 

€ 

gK = gK max ⋅ n , where gKmax

is the conductance when all channels are open, i.e. if each channel has conductance gKss and there

are a total of NT channels (open + closed), then gKmax = gKs
.NT. The single gate model does not

account for the experimental data on squid axon. However, the analysis, given above, paves the
way for introducing multiple gates that do account for the data

Multiple gate channels are required

The simplest multiple gate channel model assumes that all gates act independently of each other,
In this case, our computation of n, the fraction of open gates, is still valid. If n is the probability
of finding a channel with one gate open, then the probability of finding a channel with two open
gates is given by n2, and the probability of finding r gates open is nr. In general we can write

Equation 13 

€ 

gK = gK max ⋅ n
r

Figure 7 shows a sample of the data used to test various gate models. The results show K+

conductance measurements on a squid axon that was subjected to a sustained depolarization: the
membrane potential was raised from its resting value of –65 mV to –2mV and held constant at –2
mV for about 11 msec. Clearly, using a single gate per channel (r = 1) is inadequate, but setting r
= 4 fits the data nicely. We conclude that there are 4 gates in the K+ channel and use

Equation 14

€ 

gK = gK max ⋅ n
4

Figure 7. Potassium conductance of a squid axon subjected to a voltage clamp where, at time =
0, the membrane potential was raised from its resting value of –65 mV to –2mV and
held constant at that level for 12 msec (Hodgkin and Huxley 1952). Experimental
data (circles) are compared to ‘best fit’ model predictions (Equation 13) with r = 1
(dashed curve) and r = 4 (solid curve).
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In general, the values of an and bn in Equation 12 will depend on the membrane potential, Vm.
The following empirical equations give values for an and bn:

Equation 15

€ 

an =
0.01• Vm + 55( )

1− exp − Vm + 55( )
10

 

 
 

 

 
 

 

€ 

bn = 0.125 • exp − Vm + 65( )
80

 

 
 

 

 
 

Equation 15 introduces voltage activation into the model. The correct values to use in the above
equation for the initial value of n correspond to Vm =Vr. (This will automatically occur if you
don't start the stimulus at t = 0; i.e. make sure that ontime > 0.).

The model for an axon with voltage activated K+ channels can be constructed using Figure 6
together with Equation 10, Equation 11, Equation 12, Equation 14, and Equation 15 within the
K+ current submodel window of Figure 3. (Remember: double click on the submodel icon to open
its window).

Exercises

1. Begin by running your simulation for 8 msec with a time step DT = 0.03 msec. Use a
SQUAREPULSE stimulus with intensity =100, ontime =1, and duration = 0.3. Plot the
stimulus and membrane potential on the same graph.

2. Increase the size of the stimulus. Is there a threshold? Is the response ‘all or none’?

3. Increase the intensity to 500, and include the number of open K channels (either n4 or gK) in

your plot. You can see from the plot how n4 or gK lags behind the stimulus; the K gates are
slow to respond. Following the stimulus, notice how Vm dips below its resting value only to
return to it several msec later. This same dip is seen in fully formed action potentials and is
due to the slow response of the K gates: they are not only slow in responding to a
depolarization, they are also slow in returning to their normal configuration once the
depolarization is removed.

4. Set intensity to 500 and the duration to 5 msec. Vm rises and then falls as the K+ gates open
allowing more K+ to move down its concentration gradient , out of the axon. Evidence of open
K+ gates is also seen when the stimulus is turned off. Now the descent of Vm overshoots the
resting potential and slowly returns to normal. As we shall see, the persistence of open K+

channels immediately following the stimulus is a major contributor to the refractory period.

5. To make it easier to take out, or patch in, the voltage activated K+ channels, modify the
expression for gK in the following way. Connect a new formula icon called SwitchK to the gK
icon. Remembering that for the passive axon gK = 0.425 mmho/cm2 (Table 1 of that exercise),
we can redefine gK as

Equation 16

€ 

gK = IF SwitchK = 0 THEN 0.425 ELSE gKmax* n4
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Now, by simply setting each SwitchK = 1 we simulate an axon with voltage activated K+

channels present. With SwitchK = 0, we simulate an axon with passive (non voltage activated)
K+ channels.

Na+ channels have fast and slow gates

Now we add voltage activated Na+ channels. The treatment is very similar to the K+ channels. As
before, each channel contains four gates, but only three of them (the fast m-gates) are identical ;
they tend to open when the membrane is depolarized. The fourth (slow h gate) closes upon
depolarization. All four gates have to be open simultaneously before Na+ can pass through one of
these channels. Na conductance is described by1

Equation 17

€ 

gNa = gNamax ⋅m
3 ⋅ h

• gNa max = maximal Na+ conductance = 120 mmho/cm2 (constant)

• m = the fraction of the total number of fast Na+ gates that are open at any time.

• h = the fraction of the total number of slow Na+ gates that are open at any time.

• m3 and h vary between 0 and 1 and depend on both Vm and time.

They accumulate as follows:

Ropen Rclose

m am(1-m) bmm

h ah(1 - h) bhh

Table 2. Rates for m and h. The a's and b's are rate constants defined in Equation 19 and
Equation 20. The m and h gates submodels are similar to the n-gates model.

As in the case of the K+ channel, we have to supply initial values for m and h. These are obtained
by assuming that, prior to stimulating, the nerve has been in a steady (resting) state with Vm =
Vr. Therefore, Ropen = Rclose for both m and h. Using Table 3 above to apply these criteria, we can
solve for initial values as

Equation 18

€ 

minitial =
am

am + bm
,

€ 

hinitial =
ah

ah + bh
, at V =Vr

                                                

1 The notation m, h, and n for the Na+ and K+ channels is admittedly not very mnemonic. However, time has
sanctified the notation, and that is how they are denoted in virtually all textbooks. Unfortunately, we are bound to
follow precedent here.
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In general, the values of the a's and b's depend on Vm. Again, the correct values to use in the
above equations correspond to Vm =Vr. and this will automatically occur if you don't start the
stimulus at t = 0; i.e. make sure that ontime > 0.

The a's and b's change with Vm as it departs from Vr. They are obtained from the following
empirical expressions :

Equation 19

€ 

am =
0.1• Vm + 40( )

1− exp − Vm + 40( )
10

 

 
 

 

 
 

 

€ 

bm = 4.0 • exp − Vm + 65( )
18

 

 
 

 

 
 

Equation 20

€ 

ah = 0.07 • exp − Vm + 65( )
20

 

 
 

 

 
 

€ 

bh =
1.0

exp − Vm + 35( )
10

 

 
 

 

 
 +1

Just as in the case of the K+ channels, you can modify the expression for gNa in your simulation
to make it simple to take out the voltage activated Na+ channels or patch them back in at your
convenience. Introduce a new formula icon called SwitchNa, and connect it to gNa . For the passive
axon gNa = 0.0167 mmho/cm2, so we redefine gNaas

€ 

gNa = IF SwitchNa = 0 THEN 0.0167 ELSE gNamax ⋅m
3h

With SwitchNa = 1, voltage activated Na channels are active; with SwitchNa = 0, they are absent.

Stimulate the axon

Leaving both Na and K voltage activated channels in your model should be sufficient to
reproduce most of the excitation behavior of real axons.

1. As before, run your simulation for 8 msec with a dt = 0.03 msec. Use a squarepulse stimulus
with intensity =100, ontime =1, and duration = 0.3. At first plot the stimulus and membrane
potential on the same graph.

2. Once you have succeeded in obtaining an action potential experiment with:

a. the intensity (e.g. reverse it)

b. the duration

c. the shape of the stimulus (e.g. a ramp or an alternating current sine wave)

d. two stimuli in a row
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3. See if you can reproduce some of the classical results described in text books. E.g.

a. threshold

b. all or none behavior

c. refractory period

d. accommodation

4. You are now in a position to explore the details of nerve excitation in depth by plotting any of
the variables you choose. The Na+ and K+ currents yield the actual flow of these ions at each
instant. The conductances are a measure of the number of open channels at each moment. m3 is a
measure of the fraction of fast Na+ gates that are open, while h measures the fraction of slow
gates. You can measure the actual amount of Na+ that moves in with each impulse and estimate
how fast the Na+ pump would have to operate to pump it back out during rest. You can mimic a
TTX poisoned axon simply by reducing (or abolishing) g

Na
.You can study the effects of

hyperpolarization and find that at more negative resting potentials, there are more Na+ channels
available for a quick response because they are fewer h gates blocking them.

Steady state plots show where the gates are ‘heading’

In a voltage clamp experiment Vm is held constant by an external source of charge (see Voltage
Clamp below for details). This means that all the a’s and b’s are also constant during the clamp,
making m, n, and h linear. If the membrane potential is suddenly changed from any value (say Vr)
and clamped to a new potential, Vm, then m, n, and h rise (or fall) to a new steady state evaluated
at Vm as: .

Equation 21

€ 

nFinal =
an

an + bn

mFinal =
am

am + bm

hFinal =
ah

ah + bh

 

 

 
 
 

 

 
 
 

at Vm =V

Plots of Equation 21 in Figure 8 show where each of the variables m, n, and h are ‘heading’ at each
Vm. Upon depolarization (increasing Vm) , m and n increase tending to open Na+ and K+ gates,
while h decreases tending to close Na+ gates. Further, at rest when Vm = V r ≈ – 65 mV, we see
that only a few m gates (5%) are in the open position, while a large number of h gates (60%) are
open. (The percentage of open Na+ channels is given by m3h = 0.053×0.60×100 = 0.0075%.).
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Figure 8. Plots of Equation 21 showing steady states of m, n, and h as a function of membrane
voltage, Vm.

Relaxation time plots show how fast things are changing

The rates at which m,n, and h approach their steady state values can be summarized by plotting
their respective relaxation times, Tm, Th, and Tn which are computed as:

Equation 22

€ 

Tm =
1

am + bm

Th =
1

ah + bh

Tn =
1

an + bn

 

 

 
 
 

 

 
 
 

at Vm =V

The plots are shown in Figure 9. We see that the m gates are much faster (smaller relaxation time)
than either h or n. This is particularly true at potentials near the resting potential (-65 mV) and
within the normal range of depolarizations that will trigger excitation. These results justify calling
m gates fast, in comparison with n and h gates, which are called slow.
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Figure 9. Plots of Equation 21 showing relaxation times of m, n,and h as a function of Vm()

Excitation has three phases

Recall that the K+ concentration inside of the axon is high, while the outside concentration of Na+

is high. Further, recall that the membrane potential is a measure of the electrical force on a
positive charge. Finally, remember that the amount of charge movement necessary to make
substantial changes in Vm is very small. During the short time of a single action potential, the
actual amounts of Na+ and K+ that move in or out of the axon are very small; they have
significant effects on Vm, but the concentrations of Na+ and K+ hardly change. At rest the axon is
permeable mostly to K+, but not much K+ leaks out because the opposing membrane potential,
Vm, is close to the K+ equilibrium potential (i.e. the concentration gradient of K+ is almost
balanced by Vm pushing in the opposite direction (see Figure 12).

At rest, the membrane is polarized. At Vm = Vr, Figure 8 shows a number of slow (h, n) gates are
open but most rapid m gates are closed so that most Na+ channels are closed. When the
membrane is stimulated, its response to the depolarization can be divided into 3 time phases:

1. Early response when the rapid m-gates open quickly. Now both m and h gates are open.
The slow h gates have not had time to close in response to the depolarization.  As a
result, channels are freely permeable to Na+, and Na+ rushes into the axon causing Vm to
rise in the positive direction.

2. Late response. A moment later the slow h-gate closes. The membrane is no longer highly
permeable to Na+, so the rapid inflow of Na+ ceases. In addition, the slowly responding
n-gates in the K+ channel open and K+ flows out of the axon, causing Vm to fall in the
negative direction.

3. Recovery phase. Still later, the slow gates return to their original resting position.
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The threshold occurs when Na+ flowing in surpasses K+ flowing
out

A sub-threshold stimulus does not stimulate a sufficient Na+ flow influx to overcome the outflow
of K+ and the axon repolarizes without firing. A supra-threshold stimulus triggers enough Na+

channels to open so that Na+ inflow exceeds K+ outflow, and the net charge flow is now positive
inward, But, this depolarizes the axon even further, and opens even more Na+ channels which
causes still more depolarization. A vicious cycle (positive feedback) ensues; the membrane
potential takes off in the positive direction with an explosive velocity as the interior of the axon
becomes more and more positive. But this rapid upward movement of Vm does not persist. Soon
Vm becomes positive and large enough to oppose Na+ entry despite the open channels, i.e. Vm

approaches the Na+ equilibrium potential where the concentration gradient moving Na+ inward is
balanced by Vm pushing Na+ out.

At the same time the delayed effects begin to appear. Na+ channels close and voltage activated K+

channels open allowing K+ outflow that exceeds Na+ inflow. The net flow of charge is now
positive outward, and Vm plummets toward its resting value, overshoots momentarily, and settles
closer to the K+ equilibrium potential (−77 mV) because the voltage activated K+ channels are
still open making the membrane even more K+ permeable than it was at rest. Finally the
repolarized membrane closes the voltage activated K+ channels and Vm returns to its resting value.
The positive and negative feedback loops are illustrated in Figure 10.

Figure 10 The threshold is where IK = INa. With INa < IK the stabilizing negative feedback
(lower cycle) dominates. When INa > IK the explosive positive feedback (upper
cycle) dominates.

From this qualitative description, we see that the firing threshold is determined by the stimulus
strength that is large enough to allow an inward Na+ flow that exceeds the outward K+ flow.
From that point onward, the stimulus plays no further role because the ingredients of the
positive feedback cycle reside in the axon itself. This is shown in Figure 11 where the absolute
values of INa (absINa) and IK are plotted together with the corresponding Vm for stimuli that are
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(A) sub-threshold, (B) nearly threshold, and (C) supra threshold. The principal result is striking:
no action potential develops until absINa> IK. 2

  

Figure 11 Plots of the absolute values of INa (absINa) and IK together with the corresponding
Vm for stimuli that are subthreshold (A with Istim = 15.00), nearly threshold (B with
Istim = 15.275) and supra threshold (C with Istim = 15.30).

Vm is limited by VK and Vm

The all-or-none response arises naturally out of this positive feedback; once the response is
triggered, the positive feedback drives the membrane potential to its maximum value (near the
Na+ equilibrium potential). The size of the action potential is determined, to a large extent, by the
concentration gradients of Na+ and K+. The concentration gradient of K+ limits the resting
potential (K+ equilibrium potential) while the concentration gradient of Na+ limits the height of
the action potential (Na+ equilibrium potential). Just as a stick of dynamite contains its own
explosive energy, the axon membrane is ‘loaded’ with ‘explosive’ energy in the form of ion
gradients.

Although this description captures the essence of the excitation process, the precise position
where excitation occurs is a bit more complicated because we have ignored contributions of the
leak current and assumed that the process takes place before any n (K channels open) or h gates,
(Na channels close) have time to develop. In addition, although the size of the action potential is
limited by VK and VNa, it never reaches either one, and closer inspection (see Figure 25) reveals
that axons do not follow all-or-non behavior as precisely as once held.

Refractory Period is determined by the return to steady state of
slow gates, n, and h

For a brief msec or two following excitation, the axon is no longer excitable. This recovery phase
is called the refractory period, during which the threshold appears to be infinite, followed by a
gradual return to normal. The basis for the refractory period is found in the ‘late effects’. After
the first msec of excitation the slow Na+  (h) gates close and remain closed for a brief time despite

                                                

2 In some cases with stimuli that are just under threshold the absINa may momentarily exceed IK, only to fall back
as the late response (K+ channels open, Na+ channels close) sets in.
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the fact that Vm is near rest. These gates were slow to respond to the initial depolarization, and
they are equally slow in responding to the repolarized membrane. In addition, the voltage
activated K+ gates are still open and this drives Vm below the resting potential, creating a dip
called the negative afterpotential. With the slow Na+ gates closed and the K+ gates open, it is
almost impossible for Na+ inflow to exceed K+ outflow in order to reach threshold. You can
illustrate this by plotting the absINa and IK that result from a second stimulus delivered during the
refractory period. To make this plot intelligible, you may have to use the Zoom button on the
graph window to see the results.

In addition to Na+ and K+ channels, the axon is replete with Na+–K+ pumps. But do they
influence the action potential? The answer is no, at least not directly. The ion fluxes driven by
the Na+–K+ pump are swamped out by the more massive movements of the ions through the
channels. The pump does not cycle often enough to make a measurable difference during an
action potential. However, action potentials are very brief and the axon is at rest most of the
time. At rest there is ample time for the slow cycling of the pump to restore the small amounts of
Na+ and K+ that have leaked through channels activated during the action potential.

The Voltage Clamp uncouples Vm from the gates
Excitation of a normal axon involves the rapid, but transient increase in sodium conductance, g

Na
,

followed by a slower, more prolonged increase in potassium conductance, g
K
. These changes in

membrane permeability are governed by the opening and closing of ion channels. Study of the
axon in its natural state is complex because the opening and closing of each channel gate depends
on both time and Vm, and Vm in turn is changing in response to changes in the gates. This mutual
interaction between gates and Vm endows the axon with excitation properties that allow it to
respond in an explosive manner when stimulated.

To simplify analysis of the gates it is expedient to interrupt this cycle by making the membrane
potential independent of the gates. This is accomplished by ‘clampling’ Vm at a constant preset
level throughout the axon's response and then measuring the current (ion flow) through the
channels while the measurement is underway. To find what portion of the current is due to Na+,
one can remove the Na+, or poison the Na+ channels; what current remains must be due to
K+—providing other ion leaks are negligible.

Voltage Clamp Experiment

For simplicity, we illustrate the voltage clamp experiment in an axon with poisoned Na+ channels
and ignoring the small leakage currents. In this case all current is carried by K+.

At rest the concentration gradient driving K+ diffusion out of the cell is balanced by membrane
voltage acting in the opposite direction. Consequently, very little K+ leaks out (see Figure 12).
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Figure 12. Forces acting on the K+ ions before the clamp is turned on.

When the voltage clamp is turned on, a small pulse of negative charge is delivered to the external
membrane surface and an equivalent positive charge is delivered to the internal surface. This new
charge is just sufficient to jump the membrane potential from -65 mV to -20 mV (Figure 13a).

This new -20 mV membrane potential tending to force positive charge into the cell is too weak to
balance the tendency of K+ to diffuse out of the cell. In addition, the depolarization of the
membrane opens more K+ channels. K+ diffusing out of the cell would add positive charge to the
outside and change the membrane potential, but the voltage clamp monitors Vm and prevents any
change by adding one negative charge for each K+ that crosses the membrane out of the cell
(Figure 13b).3 Thus, the compensating current delivered by the external electrode is a precise
measure of the K+ leaving the cell. The value of the voltage clamp is due to the fact that it is not
possible to chemically measure the small amounts of K+ that enter or leave the cell within a
fraction of a millisecond, but the charge delivered by the voltage clamp can be measured easily.

If both Na+ and K+ channels are open then the total measured voltage clamp current equals the
sum of the individual Na+ and K+ currents. Subtracting the K+current (measured as above in a
separate experiment) from the total current leaves the Na+current.

                                                

3 The negative charge added to the solution is an ion, not a bare electron. The identity of the ion depends on the
type of electrode and need not concern us here
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Figure 13. (a) The voltage clamp has been turned on, charging  the membrane to a new pre-set
potential. (We have not shown the intracellular electrode which acts in a similar

way by ‘absorbing’ the excess negative charges (ions) left behind by K+ when it
moves to the outside.) (b) K channels open in response to depolarization. Charge
delivered by the electrode compensates for the K moving out of the cell preventing
any change in membrane potential. The current delivered by the electrode = IK.

 Building the Voltage Clamp
In this section we will lead you through the procedure for building a voltage clamp model that
will impose a constant membrane potential on the model axon.

Figure 14 Flow chart for the voltage clamp model.

1. Choose a desired membrane potential; call this Vset.
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2. Add charge to the membrane until the membrane potential is equal to the desired amount.
This is accomplished by adding  (Vset - Vr)Cm to the membrane. Be careful with + and - signs
on the V's, and remember: Vr is negative! One good way to set this up is to use the PULSE
function with the desired charge as the ‘volume’ part of the pulse. For example, if you
wanted to start the voltage clamp after 0.2 msec have elapsed, use the following stimulus:

 Istim = CHARGING CURRENT = PULSE((Vset – Vr)*Cm, 0.2, 1000)

The electrical current containing this pulse of charge is called the ‘charging current’. Although
this will create the desired change by giving Vm a good boost to get it close to Vset, it will not
hold it there because ions will immediately commence to move. To maintain Vm close to Vset,
you will have to monitor Vm at all times and keep adding or taking away charge via the
stimulating electrodes to stop Vm from drifting. This compensating current used to maintain
Vm close to Vset is called the ‘feedback current’.

3. Define a variable called  error as the difference between Vm (the membrane potential) and Vset.
Keep adding charge proportional to this error (via the stimulating electrodes) so that the error
is always close to zero. If the error is positive, you will have to take + charge away from the
internal membrane surface to compensate (i.e. inject a negative current), and vice versa. (Note
that if you make a mistake in the sign of your current, you will change a negative feedback
into a positive one, and the system will go unstable!) The proportionality constant that
relates the feedback current to the error is called the ‘gain’.

 FEEDBACK = – GAIN*(Vm – Vset) = – GAIN*(error)

 Increasing the GAIN increases the sensitivity of the feedback: with a large GAIN, a small
error will induce a large feedback response.

 To clamp the voltage for a prolonged period of time, the feedback current should be added to
the charging current (again via the stimulating electrodes). However, our feedback current is
not used to create a new potential, but only to maintain it. Therefore it is best to add the
feedback current just after the pulse has ceased.

To begin the clamp after 0.2 msec, charge up the membrane with a pulse starting at 0.2 msec
and lasting for only DT additional msec. As soon as the pulse is complete, i.e. at 0.2+DT
msec the feedback is turned on. We have

Equation 23  Istim = CHARGING CURRENT + FEEDBACK

 = PULSE ((Vset – Vr)* Cm , 0.2, 1000) - GAIN*(Vm - Vset)* STEP(1, 0.2+DT)

The feedback current is easily measured, but what does it tell us? Since the voltage is held
constant, the membrane charge cannot be changing. Therefore, the only time we can add a
charge from our electrodes to the inner surface of the membrane is when a charge of like sign
has left this surface. In other words, the feedback current measures the net charge flowing
through the channels. It is just what we need to compute the opening and closing of channels,
since, if the current is large, there must be many channels open. To find what portion of the
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current is due to Na+, subtract the Na+ current (or poison the Na+ channels); what remains
must be due to K+ and leaks.

4. Try Vset = –20 mV and experiment with different values of GAIN to see how close you can
hold (clamp) the membrane potential to –20 mV. Set the duration at 8 msec.

5. Record both Vm and Istim. The feedback of Istim is a measure of the net charge flowing through
the channels.

6. Compare the magnitude of Istim in the voltage clamp measurements with the same quantity in
the excitation experiments. This gives some idea of the magnitude of the relatively small
stimulus (charging current necessary to depolarize the axon to some threshold value) and the
huge response of the intact nerve (charge flowing through channels).

7. The steady state error is given by the deviation of Vm from Vset. This quantity is important in
feedback systems. Can you reduce it by increasing the GAIN? Show that if the GAIN is too
small Vm is not clamped, but if the GAIN is too large the system is unstable. This instability
is due to an inevitable time lag between the error detection and the feedback signal.

8. Separate the contributions of Na+ and K+ to Istim. You can accomplish this by recording Istim
after poisoning (removing) one channel type and studying the other. To a good
approximation, you can ignore the contribution of the leakage current, IL. Verify this by
plotting the leakage current on the same scale as Istim. Note that both INa and IK have a
measurable delay before changing at their maximal rate. This is not characteristic of a simple
exponential (linear) process, and it is what prompted Hodgkin and Huxley to consider raising
n and m to a power (i.e. n4 and m3). Try measuring INa, and IK at several different voltages

(Vset).

9. Try changing the system into a positive feedback—you will see the system go unstable very
quickly!

The Hodgkin-Huxley Model Updated
Although the Hodgkin Huxley (HH) model accounts for an impressive array of experimental data,
like any theory it has its limitations and inaccuracies. In particular, data obtained since the
original HH model was proposed raise the following issues:

• The HH model assumes that the ionic currents are linear functions of membrane voltage, Vm.
Although the authors supplied evidence that this was a reasonable assumption, more recent
experiments show a non-linear relation that can be accounted for by the Goldman-Hodgkin-
Katz (GHK) description of ion diffusion in a constant electric field (see the Appendix).
Further, the HH model was devised to describe the squid axon under a narrowly defined set
of conditions: the linear relation does not have a built-in mechanism for incorporating the
dependence of gNa or gK on ion concentrations, but the GHK equations do.
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• The HH model is inconsistent with single ion channel recordings (patch-clamps) and with
measurements of very small currents (gating currents) that reflect charge movements
associated with conformational changes in channel proteins that occur during excitation. This
data provides strong evidence that, contrary to HH model, inactivation (h gates) and
activation (m gates) of the Na channel are not independent and that the channels move
through a sequence of dependent states before opening (Hille 2001; Patlak 1991).

• The rate constants in the HH are empirical functions of voltage. Since there is no ready means
to interpret them, they are a dead end in the quest for molecular mechanisms underlying ion
channel physiology.

• In addition to the above there are a number of experimental discrepancies that require
extensions, including the response to sustained stimuli, the voltage dependent block of Na
channels by divalent cations, and changes of external ion concentrations as they are trapped
within the small spaces between the axon and supporting glial cells (Clay 1998).

An updated squid axon model (Clay 1998) that addresses these issues follows.

A revised Na+ current model uses the GHK equations plus a new
channel model

Our updated version replaces the original Na current submodel (Figure 3) with the submodel
shown in Figure 15.

Figure 15 Updated INa submodel. Replacement of both m and h gates are contained within the
Sgates sub model. The CatBlocker submodel contains the influence of divalent
cations on the Na+ channel.  gNa is replaced by PNa and the dependence of INa on
Na+ concentrations is now explicitly taken into account by the GHK flux given in
Equation 26.

The object of the submodel is to compute the Na+ current from the GHK equation under all
conditions. We begin with a simpler case where all channels are open and we replace the
Hodgkin-Huxley expression for the maximum Na+ current. Thus, INaMax= gNaMax(Vm – Veq), is
replaced by the constant field equation (see the Appendix for derivation):
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Equation 24
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where Panama [cm.sec-1] represents the permeability coefficient of the membrane with all channels
open, while Nai and Nao [mM.L-1] represent the concentration of Na in the internal and external
solution (see the Appendix for resolution of units)

Normally, only a fraction of the available channels are open. There are two independent sources for
this attenuation: (1) Many channels are in a closed configuration, and (2) divalent cations in the
external solution can block channels. Let S6 denote the fraction of channels that are in the open
configuration, and fb denote the fraction that are blocked by divalent cations. Then the fraction that
are not blocked is given by 1−fb, and the fraction of channels that are both open and not blocked by
cations is given by S6(1-fb). We use this result to define a dynamic Na+ permeability,  PNa, by

Equation 25
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PNa = S6 1− fb( )PNaMax

An expression for the Na current that applies to all cases is obtained by substituting PNa for
PNaMax i.e.

Equation 26
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S6 and fb are computed in the two subprograms (Sgates and CatBlocker) indicated in Figure 15
and described in the following paragraphs.

Revised Na Channel model uses 9 configurations to compute S6

The channel model depicted in Figure 16 and Figure 17 assumes that channel proteins pass
through a series of five conformations, S1… S5, before arriving at a state that can lead to an open
channel, S6. These replace the m gates of HH. The h gate is replaced by three inactivation states
SI4 , SI5 and SI6 as indicated. The variables S1 … S6, or SI4...SI6 represent the probability of
finding a channel in their respective state

As shown below and in Table 4, all rate constants involved in the transitions between channel
states are exponential functions of voltage. Those illustrated in red increase with depolarization
(stimulation), those in black decrease with depolarization. The states S1… S5 are intermediate
conformations leading directly to the open channel configuration. All forward transitions in this
sequence (the a's) are enhanced by depolarization driving the channel to S6, the open
configuration. At first sight the S6, the states SI4… SI6 are simply members of a detour to
bypass S5. However, once a channel is in any of these closed states the only escape is via
transition bI4 or aI6. But both of these transitions (colored black in Figure 16) decrease upon
depolarization. Moreover this decrease is not trivial. For example, inspection of Table 4 shows
that when V = 0 both bI4 and aI6 are two orders of magnitude smaller than any of the other rate
constants. Upon depolarization, the SI4… SI6 configurations trap the channel in a closed,
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inactive form. This is analogous to the closure of h gates on depolarization in the original HH
theory. Hence the SI4… SI6 configurations are referred to as inactivated states.

Transitions between sites are all reversible and the rate constants governing these transitions are
modeled using absolute rate theory.

S1            S2            S3            S4            S5            S6  open

SI4           SI5           SI6

     a1               a1               a1              a4             a5

     b1               b1               b1              b4             b5

a4             a5

b4             b5

aI4 aI6bI6bI4

Figure 16 Schematic of updated Na+ channel model (Vandenberg and Bezanilla 1991). S6 is an
open channel state. All other states are closed. Forward rates (i.e. those leading to
S6) are designated by a while the reverse rates are represented by b. Rates that
increase on stimulation (depolarization) are shown in red, rates shown in black
decrease with stimulation. Note that all rates leading to S6 increase with the
exception of aI6 which decreases.

Figure 17 Madonna Flow Chart representation of updated Na channel model. To avoid clutter,
the voltage dependent rate constants are computed in the upper left circular
diagram, and aliases of rate constants are employed in the rest. Note that all
dynamic icons are simple repeating units. The subtle behavior of the channel is due
to the voltage dependence of the different rate constants.
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Transition rate constants are obtained from absolute rate theory

The formalism of absolute rate theory, is often used to model transport processes as well as
chemical reactions (Berg, Tymoczko and Stryer 2002; Weiss 1996). In passing from one state to
another, say from S2 to S3, an activation energy barrier ∆G‡ must be surmounted. The rate
constant, k, is proportional to the fraction of molecules having the requisite energy, and
accordingly is set equal to ko exp(-∆G‡/RT) where ko is a constant of proportionality. The
exponential can be viewed as the probability of surmounting the energy barrier, and k0 as the
frequency to attempts per unit time. ∆G‡ represents the work done in moving from a local energy
minima to the next peak (see Figure 18). This work can be split into the sum of two parts , W +
We, where We denotes the electrical work done by movement of the gating charge (i.e. electrical
charge moving with the conformational change), and all other work is denoted by W.

Figure 18 Energy barrier interpretation of rate constants.

If z denotes the charge moved and Vv is the electrical potential at the local minimum (valley) with
Vp its value at the maximum (peak), then by definition of electrical potential, We = zF(Vp – Vv).
Assuming the voltage drop through the membrane is linear (constant field), and letting x denote
the fractional distance from the inside membrane (i.e. x is the actual distance divided by the
membrane thickness) we have

Equation 27

€ 

V =Vm 1− x( )                 0 ≤ x ≤1
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where it is assumed that the external solution is grounded, making Vo = 0. If dp and dv denote the x
coordinates at the peak and valley respectively, then Vp = Vm(1 – dp) while Vv = Vm(1– dv), so
that Vp – Vv = -Vm(dp –dv). Defining δ = dp –dv as the distance between peak and valley we have,
We = – zFVmδ, and it follows that the voltage dependence of the rate constant is given by

Equation 28
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where kp = ko.exp(-W/RT). Numerical values for the rate constants for the model in Figure 17 are
listed in Table 4

The flows are given by:

Equation 29
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The Na Channel is blocked by Divalent Cations
Channel blockage can be addressed by assuming the cations react with binding (receptor) sites on
the channel. Letting fb represent the fraction of sites that are blocked by cations we use
EQUATION XXX. Pharmacol Chapter to write

Equation 30
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fb =
′ C c

K50 + ′ C c

Where C'c is the divalent cation concentration at the site while K50 is the dissociation constant.
The site concentration, in equilibrium with the corresponding external concentration, Cc,, is
obtained by Equation 46 as C' c = Cc exp(2*FV' /RT) where V' is the potential at the binding site.
But, letting dc represent the x coordinate of the binding site we have, from Equation 27, V' =
Vm(1-dc) so that

Equation 31

€ 

fb =
′ C c

K50 + ′ C c exp −
2F
RT

Vm 1− dc( )
 

 
 

 

 
 

The CatBlocker submodel is illustrated below.
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Figure 19 Submodel for CatBlocker

K Current is described by the GHK equations

Although ‘State’ models similar to the Na channel model, illustrated in Figure 15, have been
proposed (Destexhe and Huguenard 2001; Perozo and Bezanilla 1990) for K channels, we follow
the Clay revision that retains the fourth order, independent gating, scheme of Hodgkin-Huxley.
However the equation for open channel current flow is replaced with the constant field (GHK)
assumption and the functioning K current is replaced by

Equation 32
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where F is the Faraday constant, Ks represents the external K concentration just adjacent to the
channel and n has the same meaning as in Figure 6.

K efflux is trapped in the axon - glial space

In the original HH theory it was assumed that the large volume of the external solution insured
that Ks changes are insignificant so that it could be assumed constant. More detailed studies of a
series of excitations show that the descent of the final portions of successive action potentials
becomes less and less with each action potential, suggestive of a rise in Ks . A structural basis for
Ks accumulation is provided by the small spaces between the axon membrane and supporting glial
cells that adhere to the axon. This can be incorporated in the model by letting Ks be a variable as
shown below.
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Figure 20 Submodel for K accumulation in the ‘glial-axon space’ KTrap of Figure 21

In Figure 20,  mKs, the milimoles of Ks within the glial-axon space , is increased by IK as

Equation 33

€ 

JKin =1.e - 6∗
IK

96485

The numerical factors arise because IK is given in nCoul.msec-1 = 10-9 Coul.msec-1. Dividing IK by

the Faraday constant 96485 converts it 10-9 mol .msec-1, and multiplying by 1000 converts to

10–6 mmol . msec-1.

Dissipation of mKs, is given by the sum of two processes:

Equation 34

€ 

JKout = rK1(Ks -Ko) +   rK 2
(Ks -Ko)

(1 +    (Ks -Ko)/Kd )3   

where rK1, rK2, and Kd are constants. The first term accounts for simple diffusion from the glial-
axon space to the bathing medium while the second term refers to a postulated, but unspecified
glial cell uptake of excess K+ form this space. The second term is essentially an empirical
expression that describes observed K+ movement out of the space. KS is obtained in proper units
(mM) for use in Equation 32 if mKs[mmol] is divided by Vol[L].

�

Figure 21 Submodel for IK
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Build the Model

Modify the basic HH model using the flow charts illustrated in Figure 15, Figure 17, Figure 19,
Figure 20, and Figure 21 together with Equation 25, Equation 26, Equation 29, Equation 31,
Equation 32, Equation 33, and Equation 34, as well as the parameters listed in Table 4

Table 4 Parameters for updated axon model

T 8 degrees C

F/RT 1/24 mV-1 at 8 degrees C

Sodium

Nai 30 mM

Nao 430 mM

PNaMax 1.24.10-4 cm.sec-1

a1 19.1 exp(0.014 V) sec-1

b1 2.04 exp(-0.048 V) sec-1

a4 6.37 exp(0.017 V) sec-1

b4 5.61 exp(-0.00017 V) sec-1

aI4 1.00 exp(0.00004 V) sec-1

bI4 0.0132 exp(-0.038 V) sec-1

a5 11.5 exp(0.06 V) sec-1

b5 2.20 exp(-0.02 V) sec-1

aI6 0.00760 exp(-0.038 V) sec-1

bI6 0.560 exp(0.00004 V) sec-1

Cc 60 mM

K50 150 mM

dc 0.81
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Potassium
Ki 300 mM

Ko 10 mM

PKmax 5.18.10-5 cm.sec-1

an 0.01*(V+55)/(1-exp(-(V+55)/10))

bn = 0.10*exp(-(V+60)/25)

init Ks= Vol.Ko

rk1 = 1.67E-7

rk2 = 1E-5

Kd = 2mM

Vol = 1.1E-6 L

Steady state initial conditions can be found by running the
model from arbitrary starting points.

All initial conditions are fairly explicit except those for the S states. These need to be determined
from the steady state. There are two methods for finding steady initial conditions . The first and
most straight forward is to set all flows equal to zero and solve the resulting simultaneous
equations. We did this for m, n, and h in the original HH model. In the revised case, for the S
states we would set all J’s in Equation 29 equal to zero and solve for the channel states. Often
these equations cannot be solved analytically and we resort to numerical solutions. (Berkeley
Madonna has a routine for this called RootI – see the menu item Help>Equation Help scroll to
Root Finder Equations). Unfortunately, with a complex set of equations this is not always
feasible.

The alternative, workable, but less elegant, method that we pursue here is to let the model find its
own steady state. We guess values for all the unknown initial conditions start the model running
with no stimulation throughout, and keep it running until it settles into a steady state. Values in
this state will be valid initial conditions for the next simulation that will include the stimuli or
conditions that characterize your specific problem. In practice it is simpler to carry out the
procedure within a single simulation by running it for a long time, and then applying the stimuli
near the end. In our case, suppose we are interested in the wave form of a single action potential
over a period of say 10 msec. Set the stoptime = 110 msec and initiate the stimulus at 100 msec.
The system will have 100 msec to settle into a steady state and you can zoom into the last 10
msec for your record. Of course you will also want to examine the first 100 msec to verify that
the system has in fact settled into a steady state (more time may be needed). Once you have
established a practical time for the system to settle down you may want to set the time axis on
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the graph so that it will only begin plotting where your record begins (e.g. at 100msec). To do
this choose the menu item Graph >axis settings…, uncheck Auto, and change the initial point on
the x axis.

For example A crude set of initial guesses would set all S gates initially equal to 0.111 (There are
9 gates and by definition the sum of all S values =1). Run the model with these initial values (and
no stimulation until the S values flatten out to a constant value, Use the new (steady state) values
as the initial guess in subsequent runs where you allow stimulation and/or other changing
conditions.

Compare an observed action potential with the HH and revised
model predictions.

Figure 22 shows a recorded action potential obtained with a 40µA cm –2 pulse 0f 1 msec duration
contrasted with the HH prediction. Note that the minimum (arrow) in the experimental trace
occurs several msec later than predicted by the HH model. Verify that the revised model can
reproduce this delayed minimum by setting: Intensity = 40µA cm –2, Stimulus = Intensity
.SquarePulse(5,1), Vr = - 63 mV, and stoptime = 25 msec
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Figure 22 A. Action potential obtained with a 40µA cm –2 pulse 0f 1 msec duration. The arrow
points to the minimum in the recording. B,  HH prediction with same stimulus
(Clay 1998).

Show that the observed delay is due to K accumulation. You can study effects of K accumulation
by changing the Vol, the axon-glial interspace volume. The larger the volume, the smaller the
accumulation.

Revised model predicts response to sustained stimulus

 Figure 23 shows a recorded action potential obtained with a 30µA cm –2 stimulus lasting 60 msec
together with the corresponding HH prediction. HH predicts a train of impulses following the
first, while the experimental record shows a quiescent period. Using the same stimulus
parameters (30µA cm –2 for 60 msec), show that the revised model reproduces the experimental
results.

Figure 23 Response to sustained 30µA cm –2 stimulus lasting 60 msec. The vertical calibration
bar corresponds to 50 mV(Clay 1998).
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Revised model predicts response to train of low intensity pulses

Figure 24 shows the recorded response to a repetitive set of weak stimuli with intensity = 10µA
cm –2. Each stimulus pulse lasted 1 msec with The interval between stimuli was 9.5 msec, while
the duration of each stimulus was 1 msec. Note that HH predicts a response to every other
stimulus, while the experimental record, again, shows a quiescent period. To test the revised
model you will need to reproduce the periodic stimulus pattern.

Figure 24 Response to a periodic series of pulse stimuli. Top: Experimental record obtained
with 10 µamp/cm2 pulses, each lasting 1 msec. The time interval between the 1
msec pulses was 9,5 msec. Bottom:  HH prediction. (Clay 1998).

Use the mod function to create a periodic time base for periodic
functions.

To make any arbitrary function, f(t) repeat itself every Tp time units we insert a new time clock,
tc, within the function that resets itself to 0 each time it reaches Tp. In Madonna tc is given by

Equation 35

€ 

tc =mod time,Tp( )

To make f(t) periodic we replace t with tc. For example, to produce a periodic train of exponential
decays of the form f(time)= exp(-k*time), we simply write Equation 35 and then use exp(-k*tc).
To create our repetitive stimulation pattern, we cannot use the squarepulse function for f(time)
because it is not an explicit function of time, However, note that a single stimulation delivered at
9.5 msec can be written as f(time) = IF time< 9.5 THEN 0 ELSE intensity. If the same function is
repeated every 10.5 msec (Tp = 10.5), then the stimulus will last for 1 msec. The stimulus
pattern is implemented by replacing time with tc. We use Equation 35 together with



NEUROBIOLOGY 1

-37-

Equation 36

€ 

Istim = IF tc < 9.5 THEN 0 ELSE intensity

Find the threshold intensity for a 1 msec stimulus. Run the revised model at this threshold
intensity for the pulse train defined by Equation 36 and try to reproduce the main features of the
experimental results shown in Figure 24. Show that these results are not due to accumulated K.

The all-or-none response is not observed with stimuli close to threshold.

Figure 25 shows the recorded response to a set of four, weak, 1 msec, stimuli with different
intensities near threshold. Three of the stimuli elicit action potentials, while the fourth is barely
below threshold and does not evoke any active response. Results are superimposed for ease of
comparison. Notice that the experimental results shows a definite gradation in the height of the
action potential; the weakest stimulus gives rise to the longest delay as well as the smallest
potential. Corresponding HH results shows similar delays, but the heights of the three action
potentials are virtually equal. Stimuli used in the original record were threshold +1.0 and
threshold ± 0.1 µA cm –2. Using similar stimuli show that the revised model can replicate the
main features of the experimental recording. Use the Overlay button to superimpose your results.

Figure 25  Left: Action potentials generated by 4, near threshold,1 msec stimuli. threshold
+1.0 and threshold ± 0.1 µA cm –2 . Right: HH prediction. (Clay 1998).

These few examples show that the revised model is, indeed more accurate than the original HH
formulation. However, it’s real significance is that unlike the orthodox HH model it simulates
channel behavior on a molecular scale and lends itself to interpretation in terms of molecular
structure.
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Projects
1 Model the temperature dependence of Squid axon excitability.

Hodgkin and Huxley measured the temperature dependence of the rate constants in their model
(the a’s and the b’s) and found that each had a Q10 ≈ 3. By definition the Q10  is the relative
increase in the rate when the temperature is raised 10° C. If a(T0) is a known rate constant at
temperature = T0  then the value of a at any temperature T, will be given by

Equation 37

€ 

a T( ) = a T0( )Q10
(T−To ) /10

In the HH model values of the rate constants were determined at 6.3°C. So T0= 6.3 while Q10 ≈
3. Use these values to apply a temperature correction (similar to Equation 37)  to the a’s and b’s
of the HH model.

Compare the action potentials at 6.3°(common squid environmental temperature), 20°(room
temperature), and 37°(mammalian body temperature) by super imposing them on the same
graph. Note the speed of response as well as the height of the action potential. How does the
threshold vary with temperature

Can you account for these differences? Verify your explanation. E.g. examine various currents?
Plot steady state and relaxation time curves similar to those of Figure 8 and Figure 9 at the three
temperatures.

2 Nodes of Ranvier at 37°C: voltage activated K channels are absent.

The nodes of Ranvier of mammalian myelinated axons have do not have voltage activated K.
Following the peak of the action potential, the nerve relies on a strong leakage current to return
the membrane potential to rest. The  CRRSS (ref) model simulates these nodes in rabbits by
making the following modifications in the HH model (units are the same as in HH):

Cm = 2.5 gL = 128 gNaMax= 1445 IK = 0

Vr = -80 VL = -80.01 VNa = 35.64

Temp = 37 gNa = gNaMaxm
2h

Imemb = IL + INa IL = gL*(Vm-VL) INa = gNa (Vm-VNa)

am =(126 + .363Vm)/(1+ exp(-(Vm+49)/53)) ah =bh /exp((Vm+74.5)/5)

bm = am /exp((Vm+56.2)/4.17) bh = (15.6)/( 1 + exp(-(Vm+56)/10))

Implement this model and run it. Note that gNa now depends on m2h rather than the original m3h.
This action potential is very stiff much faster than squid so you will have to be very careful with
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your dt. The easiest recourse is to employ the Rosenbrock (stiff solver); you can engage it via the
top pop – up menu in the Parameters window. You will also have to use a much stronger
stimulus (100 x) to excite. Using a Q10 = 3, show that, unlike the squid axon cold temperature to
say 6°C will block excitation
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Appendix
Diffusion of Ions Is a Coupled Process

Diffusion of an electrolyte like KCl is complicated by the fact that its flux is determined by electrical
forces as well as the concentration gradients. But, electrical forces are generated by all the ions
present. Thus the ion flux also depends on all other ions and, unlike non-electrolytes, ions cannot be
treated as independent particles.

First, consider the motion of ions due to electrical forces alone. The electrical force acting on a unit
charge is called the electric field and is denoted by E. Let z represent the valence of an ion (z will be
positive or negative depending on the sign of the ionic charge), let F represent the Faraday constant,
and let N be Avogadro's number. Then the charge carried by a single ion will be zF/N, and its velocity
v, will be proportional to the force on it, which is given by (zF/N)E, i.e.

Equation 38

€ 

v = u'•(zF /N) • E

where u' is a constant.

Figure 26. Flux of solute out of an elementary volume. Motion is constrained to the x direction. If the
solute velocity is given by ∆x/∆t, then all the solutes contained within the volume at time t will have
passed through the shaded plane in time t + ∆t.

Let dx be the distance traveled by an ion in time dt so that v = dx/dt. Now construct an elementary
volume, as shown in Figure 26, with dimensions dx, dy, and dz and let C denote the concentration of
an ion within the volume. If motion is constrained to the x direction, then in time dt all the ions
contained within the volume (given by C dx dy dz,) will have crossed the shaded plane whose area is
dydz. In time dt, the molar flux ,J, per unit area through the plane equals

Equation 39

€ 

J • dy • dz • dt = C • dx • dy • dz

Dividing both sides by dy dz dt, we obtain

Equation 40

€ 

J = C dx
dt

= Cv  
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Substituting Equation 38 into Equation 40, and noting that E is related to the electrical potential V by
the relation E = -dV/dx, we have

Equation 41

€ 

J =
−u'zFC
N

dV
dx

= −uzFC dV
dx

where the constant N has been absorbed into u (i.e., U = u’/N); the new constant u is called the
mobility.

If the ions are subject to concentration gradients as well as electrical potential gradients, their motion
is described by a combination of Fick’s law and Equation 41:

Equation 42 

€ 

J = −D dC
dx

− uzFC dV
dx

Both thermodynamic and statistical mechanical arguments show that D = uRT. Therefore, noting that

dC/dx = C .dlnC/dx, Equation 42 can be rewritten in the following equivalent forms:

Equation 43

€ 

J = −D dC
dx

+
zF
RT

C dV
dx

 

 
 

 

 
 

Equation 44

€ 

J = −D •C d lnC
dx

+
zF
RT

dV
dx

 

 
 

 

 
  

Equation 43, or the equivalent expression Equation 44, is known as the Nernst-Planck equation.

Equilibrium: The Nernst Potential

The simplest application of the Nernst-Planck equation is to ionic equilibria. If an ion is in
equilibrium, J = 0 and Equation 44 becomes

Equation 45

€ 

dV
dx

= −
RT
zF

d lnC
dx

Multiplying by dz and integrating both sides through the membrane from outside the cell where C =
Co, V = Vo   to inside where C = Cin, V = Vin , yields

Equation 46

€ 

VEQ =Vin −Vo = −
RT
zF
lnCin

Co

The equilibrium potential, computed in Equation 46, is also known as the Nernst potential

Ionic Flux and Current

Consider the membrane illustrated in Figure 27 that extends from the inside surface where x = 0 to
the external surface where x = d. Our task is to integrate Equation 43 through the membrane, solve
the resulting expression for J and then relate the concentration and potential at the membrane
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boundaries to corresponding quantities within the bathing solutions.

Let V' and C' denote the voltage and concentration within the membrane and let us assume a constant
electrical field, i.e. - dV'/dx = constant = -(V'o-V'in)/d . This implies that V' will be a linear function of
x as illustrated.

Figure 27 Schematic concentration and voltage profiles through the membrane. The voltage is
linear (constant field), while the concentration profile is distorted from linearity by the
electric field. The ‘in’ solution is negative, C represents a cation concentration. The
membrane potential, Vm, is given by Vin - Vo.

Substituting (V'o-V'in)/d for dV/dx in Equation 42, and solving the resultant expression for dC'/dx, we
have

Equation 47

€ 

dC'
dx

= −
J
D
 

 
 

 

 
 −

zF
RT

Vo
' −Vin

'( )
d

 

 
 
 

 

 
 
 C'

Assuming J is constant within the membrane, then all bracketed quantities are constant (independent
of x) and Equation 47 can be integrated to

Equation 48  

€ 

C = Cin
' e

−zF Vo
'−Vin

'( )
RTd

x
− J RTd

zF Vo
' −Vin

'( )D
1− e

−zF Vo
'−Vin

'( )
RTd

x
 

 

 
 

 

 

 
 

where C'in
 is the concentration just inside the membrane at x = 0. The concentration just inside the

external surface of the membrane C'O
 occurs at x = d. Letting x = d in Equation 48, and solving for J

yields

Equation 49

€ 

J =
zF Vo

' −Vin
'( )D

RTd 1− e
−zF
RT

Vo
'−Vin

'( ) 

 
 

 

 
 

Co
• −Cin

• e
−zF
RT

Vo
'−Vin

'( ) 

 
 

 

 
 
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The concentrations just inside the membrane are related to corresponding concentrations in the
bathing media by a partition coefficient, ß as

Equation 50

€ 

Cin = βCin
' Co = βCo

'

For simplicity, we assume V'o-V'in = Vo – Vin , (i.e. any interfacial potential that has to be added is the
same on both sides) so that

Equation 51

€ 

Vo
' −Vin

'( ) = Vo −Vin( ) ≡ −Vm

Where Vm is the membrane potential. Finally, we define a permeability coefficient Pc by

Equation 52

€ 

Pc = β
D
d

Substituting Equation 50,Equation 51, and Equation 52 into Equation 49 yields the GHK flux
equation:

Equation 53

€ 

J = P zF
RT

Vm
Co −Cine

zF
RT

Vm

1− e
zF
RT

Vm
= P zF

RT
Vm

Cine
zF
RT

Vm
−Co

e
zF
RT

Vm
−1

Using the relation I = zFJ, this equation can be easily recast to compute the current , IC, carried by
the ion. In this case it is convenient to multiply and divide the numerator by Co and to use Equation
46 to substitute exp(-zFVeq/RT) for Co/Cin , i.e.

Equation 54

€ 

Ic = zFCoP
zF
RT

Vm

Cin

Co

e
zF
RT

Vm
−1

e
zF
RT

Vm
−1

= gcVm
e
zF
RT

Vm−VEQ( )
−1

e
zF
RT

Vm
−1

where c

Equation 55

€ 

gc =
z2F 2

RT
PCo

BEGIN BOX

J[µmol.cm-2.sec-1], P[cm.sec-1], Vm[mV], C[µmol.cm-3] and time[sec] form
a set of practical units�

First consider voltage units and note that Vm [mV] is consistently multiplied by zF/RT[mV-1] making
the product zFVm/RT dimensionless. To see this, recall that:

z is a pure number
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F = 96485[Coul.mol-1]

R = 8315 mV.Coul-1.mol-1. °K-1.

Thus

zF/RT = z .96485[Coul.mol-1] /8315[ mV.Coul-1.mol-1. °K-1].T[°K]= z.11.60. [K-1].T[°K].[mV-1]

For example, for a univalent cation, say at 20ºC = 293ºK, we have zF/RT = 0.04mV-1 = 1/25mV.

With dimensionless zFVm/RT, practical units for Equation 53 are straight forward. Common units for P

are [cm.sec-1] and if we choose [µmols.cm-2.sec-1] for flux, then consistency is obtained with

concentration units in [µmols.cm-3] and time units in [sec]. i.e.

Equation 56 J[µmols.cm-2.sec-1] = P [cm.sec-1].Conc[µmols.cm-3] = P [cm.sec-1].Conc[mM]

This choice of units is advantageous because it consistently uses cm as the linear measure, while the

concentration unit µmols.cm-3 is numerically equivalent to the more commonly used millimols.L-1 =
mM.

I[µamp.cm-2], P[cm.sec-1], Vm[mV], C[µmol.cm-3] and time[msec] form a
set of practical units for electrophysiology
To define the units for Equation 54, recall that if we specify µfarads and mV for the units of membrane
capacitance , Cm, and voltage , Vm, then the relation Q = Cm

.Vm , requires that Q be in units of nCoul.
Further, since msec are the most convenient time units for many electrophysiology models, our
dimensional representation of Equation 54 becomes:

Equation 57 I[nCoul. cm-2.msec-1] =F.[nCoul.nmol-1]. P[cm.msec-1]. C[nmol.cm-3]

where zFVm/RT again, has been left out because it is dimensionless.

Equation 57 clearly sets msec as the time base of the model. However we can substitute other
equivalent , more commonly used, quantities without compromising this time base. Membrane
currents are generally measured in

 [µamp.cm-2] = [nCoul. cm-2.msec-1 ].

Concentrations are measured in [mM] = [µmol.cm-3] while permeability is usually in [cm.sec-1]. But,

[cm.msec-1]= 103 [cm.sec-1],

[nmol.cm-3] = 10-3 [µmol.cm-3]

Substituting these values into Equation 57, we arrive at the alternative
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Equation 58 I[µamp.cm-2] = F.P[cm.sec-1].C[µmol.cm-3]= F.P[cm.sec-1].C[mM]

Simply comparing Equation 57 and Equation 58, it is not clear whether the time base is in sec or msec.
However, as we have seen the choice of units for Vm and Cm require Q to be in nCoul. The program

updates the voltage on the assumption that current input is nCoul.msec-1.

 END BOX

Electrophysiological definitions and units

DEFINITION Symbol Value

Avogadro’s Number N 6.02×1023
 mol-1

Faraday’s constant F 9.65×104 Coul/mol

elementary charge e 1.602×10-19 Coul

gas constant R 8.315 J/(mol⋅˚K)

joule J 1 V/Coul

volt V 1 J/Coul

ampere A 1 Coul/sec

At 20º C F/RT 0.040 mV

At 37º C F/RT 0.045 mV

Table 5. Some electrophysiological constants.
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