MCB 135K Review

Midterm – II
March 30, 2004
Jason Lowry
Outline

1. Aging of the Nervous System
2. Brain Disorders
3. Imaging of the Brain
4. Oxidants and Anti-Oxidants
5. Aging of the Visual System
6. Aging of the Cardiovascular System
7. Exercise and Aging
8. Aging of Muscles
9. Immune System
Aging of the Nervous System

- Structural Changes
 1. Changes in Brain Weight
 2. Neurons vs. Glial Cells
 3. Denudation
 4. Neuropathological Markers

- Biochemical Changes
 1. Neurotransmitters
 2. CNS Synapses
 3. Neurotransmitter Imbalance and Brain Disorders

- Brain Plasticity
 1. CNS Regenerative Potential
Changes in Brain Weight

Structural brain changes with aging
changes in brain volume

young old
Neurons vs. Glial Cells

- Neurons
 - Cell Body
 - Axons
 - Dendrites
 - Synapses

- Glial Cells
 - Astrocytes
 - Oligodendrocytes
 - Microglial
Denudation

- Normal Aging
 - A, B, C
 - Small amounts of neuronal loss
 - Increased dendritic growth
- Degenerative Disease
 - D, E, F, G
 - Progressive loss of dendritic spines
 - Eventual Cell Death
Neuropathologies

• Lipofuscin
 – By-product of cellular autophagia
 – Linear increase with normal aging
 – Function in disease unknown

• Lewy Bodies
 – Present in normal aging (60+)
 – Increased accumulation in Parkinson’s Disease

• Neurofibrillary Tangles
 – Tangled masses of fibrous elements
 – Present in normal aging in hippocampus
 – Accumulation in cortex is sign of Alzheimer’s

• Paired Helical Filaments
 – Role in Neurofibrillary tangle formation
Neurotransmitters

TABLE 7-2 Neurotransmitters and Modulators in the Nervous System

<table>
<thead>
<tr>
<th>Amines</th>
<th>Amino Acids</th>
<th>Peptides</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine</td>
<td>Glutamate</td>
<td>Enkephalin</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>Aspartate</td>
<td>Cholecystokinin</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>Glycine</td>
<td>Substance P</td>
<td>Zinc</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>GABA</td>
<td>VIP*</td>
<td>Synapsins</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Taurine</td>
<td>Somatostatin</td>
<td>Cell Adhesion Molecules</td>
</tr>
<tr>
<td>Serotonin*</td>
<td>Histamine</td>
<td>TRH*</td>
<td>Neurotropins</td>
</tr>
</tbody>
</table>

*Serotonin, 5-hydroxytryptamine, or 5-HT
GABA or gamma-aminobutyric acid
VIP or vasoactive intestinal polypeptide
TRH or thyrotropin-stimulating hormone
Synapses

- Cholinergic
- Adrenergic
- Serotonergic
- Gabanergic
Brain Disorders

• Parkinson’s Disease
 1. Pathologies
 2. Symptoms
 3. Treatment Strategies

• Alzheimer’s Disease
 1. Symptoms and Signs
 2. Disease Progression
 3. Pathophysiology
 4. Treatment / Management
Parkinson’s Disease

• Loss of neuromelanin containing neurons in brain stem and presence of Lewy bodies in degenerating dopaminergic cells
Parkinson’s Disease

• Symptoms
 – Loss of motor function
 – Loss of balance
 – Speech and Gait abnormalities
 – Tremor
 – Rigidity

• Treatment Strategies
 – Pharmacological
 • Ldopa
 – Neuroprotective
 – Surgical
 – Cell Therapies
Alzheimer’s Disease

- **Risk Factors**
 - Apolipoprotein E4 on chromosome 19
 - Late-onset AD
 - APOE*4 allele ↑ risk & ↓ onset age in dose-related fashion
 - APOE*2 allele may have protective effect

- **Pathophysiology**
 - There are 3 consistent neuropathological hallmarks:
 - Amyloid-rich senile plaques
 - Neurofibrillary tangles
 - Neuronal degeneration
 - These changes eventually lead to clinical symptoms, but they begin years before the onset of symptoms
Alzheimer’s Disease Progresses Through Distinct Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Memory loss, Language problems, Mood swings, Personality changes, Diminished judgment</td>
</tr>
<tr>
<td>Moderate</td>
<td>Behavioral, personality changes, Unable to learn/recall new info, Long-term memory affected, Wandering, agitation, aggression, confusion, Require assistance w/ADL</td>
</tr>
<tr>
<td>Severe</td>
<td>Gait, incontinence, motor disturbances, Bedridden, Unable to perform ADL, Placement in long-term care needed</td>
</tr>
</tbody>
</table>

Dementia/Alzheimer’s Symptoms
TREATMENT & MANAGEMENT

• Primary goals: to enhance quality of life & maximize functional performance by improving cognition, mood, and behavior
 • Nonpharmacologic
 • Pharmacologic
 • Specific symptom management
 • Resources
Imaging of the Brain

- Types of Neuroimaging
- Neuronal Recruitment and Reaction Time
Oxidants and Anti-Oxidants

- **Oxidants**
 - Free Radicals (Table 5.1)
- **Anti-Oxidants**
 - Examples (Table 5.2)
- **Cellular Effects**
 - Metabolism
 - Homeostasis
 - Mitochondria
- **Modulation of Life Span**
 - Ionizing Radiation
 - Caloric Intake
Oxidants and Anti-oxidants

- **Oxidants (Table 5.1)**
 - Superoxide Radical
 - Hydrogen Peroxide
 - Hydroxyl Radical
 - Singlet Oxygen
 - Nitric Oxide
 - Peroxynitrite
 - Hypochlorite
 - Certain Transition Metals

- **Anti-Oxidants (Table 5.2)**
 - Vit C
 - Glutathione
 - Vit E
 - Carotenoids
 - Lipoic Acid
 - Superoxide Dismutase
 - Catalase
 - Many others
Oxidants and Anti-Oxidants

- **Free Radicals**
 - Produced when chemical bonds are broken
 - Attack other molecules indiscriminately
 - Initiate oxygen consuming chain reactions
 - Cause fragmentation and random cross-linking

- **Anti-Oxidants**
 - Reduce adverse impact of oxidants by:
 - Intercepting Oxidants before they react with vital biological agents
 - Prevent chain reactions
 - Prevent the activation of oxygen to highly reactive products
Oxidants and Anti-Oxidants

• Cellular Effects
 – Metabolism
 • Life span correlation with metabolic rate
 • Comparison involving different animal species having similar metabolic rate (Bats/Rats)
 – Homeostasis
 • Cells can adapt to increased oxygen up to a certain level and at a certain rate
 • Various other roles
 – Mitochondria
 • Leakage
 • Electron Transport Chain

• Modulation of Life Span
 – Ionizing Radiation
 • High levels cause animals to develop disease and do not allow study of oxidative damage
 • Low levels cause increased lifespan in mice
 – Caloric Intake
 • Decreased caloric intake lowers metabolic rate and increases life span
 • FSIRKO mice show an increased life span, with decrease fat, in the absence of caloric restriction
Aging of the Visual System
Aging of the Visual System

- Structural Changes (See handout)
 - Tear Film:
 - Dry eyes or tearing
 - Sclera:
 - Fat deposits – yellowing
 - Thinning – blueing
 - Cornea
 - Diameter does not change after age 1
 - Shape changes
 - Retina
 - Photoreceptor density decreases; other layers become disordered
 - Illuminance decreases with age
 - Lens
 - Increased size and thickness
 - Becomes more yellow
Aging of the Visual System

• Function
 – Corneal and Lens
 • Decreased accommodation power
 • Increased accommodation reflex latency
 • Refractive error becomes more hyperopic with age
 • Corneal sensitivity decreases
 • Scatter increases
 – Retinal
 • Decreased critical flicker frequency
 • Visual acuity declines
 • Visual Field decreases
 • Color vision changes
 • Darkness adaptation is slowed
 • Increased glare problems
 • Decreased light reaches retina
Aging of the Visual System

- Recommendation to Accommodate Problems:
 - Wear appropriate optical correction
 - Increase ambient light
 - Make lighting even and reduce glare
 - Improve contrast in critical areas
 - Avoid rapid changes in light level
 - Avoid Pastel
 - Allow more time
Aging of Cardiovascular System

- Atherosclerosis
 - Characteristics
 - Disease Results
 - Arterial Changes
 - Atherogenesis
 - Contributing Factors
 - Age Changes in Vascular Endothelium
Atherosclerosis

- Characteristics
 - Universal
 - Progressive
 - Deleterious
 - Irreversible …but (?)
Atherosclerosis

• Disease Manifestation
 – Myocardial Infarct
 – Stroke
 – Aneurysm
 – Gangrene
Arterial Changes

• Morphological Characteristics of the Arterial Wall
 – Intima – inner most layer of endothelial cells
 – Media
 • Elastica interna – formed by elastin fibers
 • Smooth Muscle cells
 • Vasa vasorum (penetrates media)
 • Elastica externa
 – Adventitia – outer most layer of collagen bundles
 • Vasa vasorum – provide blood

• Read Pages 287-289
Atherogenesis

- Fatty Streak (Intima)
 - Increased LDL and oxidized LDL
 - Accumulation of LDL in endothelial space
 - Alter and breakdown of Elastic fiber
 - Alerts immune system
 - Monocytes → macrophages
 - Phagocytose LDL and elastic fibers
 - Macrophages become full of LDL and appear as foam cells after staining
Atherogenesis

- Fibrous Plaque (Intima and Media)
 - Damaged smooth muscle cells take up LDL
 - Increase foam cells
 - Defense mechanism create scar tissue
 - Problem for metabolic exchange later
Atherogenesis

- **Atheroma**
 - Alteration of endothelial cells
 - Decreased number of cell
 - Platelets seal off area where there was a loss of cells
 - Increased growth factors
 - Increased RBC
 - Results in thrombus
Aging of Cardiovascular System

- Atherosclerosis
 - Theories
- Coronary Heart Disease
 - Risk Factors
 - Risk Assessment
 - Treatment
Lipids and Apolipoproteins

- Major Categories
- Risk Factors in Atherosclerosis
- Lipoprotein Synthesis
- Apolipoproteins
- Lipolytic Enzymes
- Receptors
Lipids and Apolipoproteins

• Categories
 – Chylomicrons and VLDL
 • High triglycerides
 – IDL and LDL
 • High cholesterol
 – HDL
 • High proteins
 • High phospholipid
LIPOPROTEINS
MAJOR PROTEIN AND MAJOR LIPID

Legend: CM = chylomicron
 VLDL = very low density lipoprotein
 IDL = intermediate density lipoprotein
 LDL = low density lipoprotein
 HDL = high density lipoprotein
 TG = triglyceride
 CE = cholesterol ester
Lipids and Apolipoproteins

- Risk Factors
 - Total cholesterol to HDL ratio above 4.0
 - Family history
 - Elevated LDL; Low HDL
 - Diabetes Mellitus
 - Age
 - Hypertension
 - Obesity
 - Smoking
Lipoprotein Synthesis

• Intestine
 – CM
 – Nascent HDL
• Liver
 – VLDL
 – IDL
 – LDL
 – Nascent HDL
Apolipoproteins

• Definition:
 – Markers on lipid cell surface that determines metabolic fate of lipids

• Roles in Metabolism
 – apoA-I
 • HDL
 • Reverse Cholesterol Transport
 – apoB-100
 • VLDL, IDL, LDL
 • Sole protein on LDL
 • Necessary for assembly and secretion in liver
 • Ligand for LDL receptor
Apolipoproteins and RCT

• apoA-I is important in reverse cholesterol transport (review figure 17.3)
 – Process whereby lipid free apoA-I and subclasses of HDL mediate the removal of excess cholesterol
Enzymes

- Lipoprotein Lipase
 - Catabolizes CM and VLDL → produces glycerol and fatty acids
 - Requires apoC-II for activation
- Hepatic Triglyceride
- LCAT
 - Essential for normal maturation of HDL
 - Associates with discoidal HDL and is activated by apoA-I
 - Forms hydrophobic cholesteryl ester that moves to core and gives spheroid shape (active)
Receptors

• LDL
 – Responsible for internalization of LDL
 – Also known as apoB-E receptor
 – Regulates cholesterol synthesis
• Macrophage Scavenger (SR-A1)
 – Recognizes oxidized LDL
 – Role in atherogenesis
• SR-B1
 – Docking protein for HDL
 – Role in selective uptake for steroid hormone production
 – Role in catabolism and excretion from liver
Exercise and Aging

- Cardiovascular Fitness
- Metabolic Fitness
- Muscular Strength
- Anti-oxidant defenses
Exercise and Aging

- Cardiovascular Fitness
 - Maximal oxygen consumption
 - VO$_2$ Max increased by regular exercise
 - Declines with aging
 - Decreases morbidity
 - Decreases mortality
Exercise and Aging

• Metabolic Fitness
 – Control age related increases in body fat
 – Decrease risk of diabetes
 – Maintain Ideal BMI
 – Exercise at 45-50% of VO₂ Max to facilitate fat loss (utilize fat as energy source)
Aging of Muscles

- **Sarcopenia**
 - Age associated loss of muscle mass
 - Most significant contributing factor in the decline of muscle strength with age
 - Lean body mass decreases between 35 and 75
 - 45% muscle mass → 15% muscle mass
Aging of Muscles

• Etiology of Sarcopenia
 – Decrease in mitochondrial mass
 – Reduced protein synthesis
 – PNS and CNS changes
 – Hormonal changes
 – State of inactivity (most prominent)
Muscle Fibers and Aging

• Type I – slow fibers
• Type II – fast fibers
 – Type II decrease much more with aging than Type I
 – Explains why older people can have increased stamina at slow pace activities (hiking)
• Bed rest results in 1.5% loss per day and 2 weeks to recover for 1 day bed rest
The Aging Heart

• Heart ages well in absence of disease
• Age associated changes
 – Heart rate decreases
 – No change in stroke volume
 – Contractility decrease with exercise
 – No change in ejection fraction
 – Heart rate – to max rate of increase with exercise “220- age”
 – Blood pressure increases due to increased peripheral vascular resistance
The Aging Heart

• Heart Failure: - insufficient cardiac output
 – Due to:
 • Impediments to forward ejection
 • Myocardial Failure
 • Impaired cardiac filling
 • Volume overload

• Cardiomyopathies
 – Dilated – leads to systolic dysfunction
 – Hypertrophic – marked with ventricular hypertrophy
 – Restrictive – excess rigidity of the walls
Immune System

• To be discussed in discussion section
Discussion

• Wednesday/Thursday
 – 1st half-hour – immune system review
 – 2nd half-hour – open office hours