Fluorescence microscopy. New probes and improved fluorescence microscopes have revolutionized our ability to discriminate between different cellular components and to determine their subcellular location accurately. This mitotic spindle is stained to show the spindle microtubules (green), the DNA in the chromosomes (blue), and the centromeres (red). (Courtesy of Kevin F. Sullivan.)
Plant cells in culture. These tobacco cells are growing in liquid culture. A histone protein that has been tagged with the green fluorescent protein (GFP) has been incorporated into chromatin. Some of the cells are dividing and are seen to have condensed chromosomes. Cultures of both animal and plant cells have been valuable research tools in all areas of cell biology. (Courtesy of Gethin Roberts.)
Progress in science is often driven by advances in technology. Biology, for example, entered a new era when Anton van Leeuwenhoek, a Dutch dry-goods dealer, ground the first microscope lens. Peering into his marvelous new looking glass, van Leeuwenhoek discovered a previously unseen cellular world, where tiny creatures tumble and twirl in a small droplet of water (Figure 8–1).

The 21st century promises to be a particularly exciting time for biology. New methods for analyzing proteins, DNA, and RNA are fueling an information explosion and allowing scientists to study cells and their macromolecules in previously unimagined ways. We now have access to the sequences of many billions of nucleotides, providing the complete molecular blueprints for dozens of organisms—from microbes and mustard weeds to worms, flies, and humans. And powerful new techniques are helping us to decipher that information, allowing us not only to compile huge, detailed catalogs of genes and proteins, but to begin to unravel how these components work together to form functional cells and organisms. The goal is nothing short of obtaining a complete understanding of what takes place inside a cell as it responds to its environment and interacts with its neighbors. We want to know which genes are switched on, which mRNA transcripts are present, and which proteins are active—where they are located, with whom they partner, and to which pathways or networks they belong. We also want to understand how the cell successfully manages this staggering number of variables and how it chooses among an almost unlimited number of possibilities in performing its diverse biological tasks. Possession of such information will permit us to begin to build a framework for delineating, and eventually predicting, how genes and proteins operate to lay the foundations for life.

In this chapter we briefly review some of the principal methods used to study cells and their components, particularly proteins, DNA, and RNA. We consider how cells of different types can be separated from tissues and grown outside the body and how cells can be disrupted and their organelles and constituent macromolecules isolated in pure form. We then review the breakthroughs in recombinant DNA technology that continue to revolutionize our understanding
of cellular function. Finally we present the latest techniques used to determine the structures and functions of proteins and genes, as well as to dissect their complex interactions.

This chapter serves as a bridge from the basics of cell and molecular biology to the detailed discussion of how these macromolecules are organized and function together to coordinate the growth, development, and physiology of cells and organisms. The techniques and methods described here have made possible the discoveries that are presented throughout this book, and they are currently being used by tens of thousands of scientists each day.

ISOLATING CELLS AND GROWING THEM IN CULTURE

Although the organelles and large molecules in a cell can be visualized with microscopes, understanding how these components function requires a detailed biochemical analysis. Most biochemical procedures require obtaining large numbers of cells and then physically disrupting them to isolate their components. If the sample is a piece of tissue, composed of different types of cells, heterogeneous cell populations will be mixed together. To obtain as much information as possible about an individual cell type, biologists have developed ways of dissociating cells from tissues and separating the various types. These manipulations result in a relatively homogeneous population of cells that can then be analyzed—either directly or after their number has been greatly increased by allowing the cells to proliferate as a pure culture.

Cells Can Be Isolated from a Tissue Suspension and Separated into Different Types

The first step in isolating cells of a uniform type from a tissue that contains a mixture of cell types is to disrupt the extracellular matrix that holds the cells together. The best yields of viable dissociated cells are usually obtained from fetal or neonatal tissues. The tissue sample is typically treated with proteolytic enzymes (such as trypsin and collagenase) to digest proteins in the extracellular matrix and with agents (such as ethylenediaminetetraacetic acid, or EDTA) that bind, or chelate, the Ca^{2+} on which cell–cell adhesion depends. The tissue can then be teased apart into single living cells by gentle agitation.

Several approaches are used to separate the different cell types from a mixed cell suspension. One exploits differences in physical properties. Large cells can be separated from small cells and dense cells from light cells by centrifugation, for example. These techniques will be described below in connection with the separation of organelles and macromolecules, for which they were originally developed. Another approach is based on the tendency of some cell types to adhere strongly to glass or plastic, which allows them to be separated from cells that adhere less strongly.

An important refinement of this last technique depends on the specific binding properties of antibodies. Antibodies that bind specifically to the surface of only one cell type in a tissue can be coupled to various matrices—such as collagen, polysaccharide beads, or plastic—to form an affinity surface to which only cells recognized by the antibodies can adhere. The bound cells are then recovered by gentle shaking, by treatment with trypsin to digest the proteins that mediate the adhesion, or, in the case of a digestible matrix (such as collagen), by degrading the matrix itself with enzymes (such as collagenase).

One of the most sophisticated cell-separation technique uses an antibody coupled to a fluorescent dye to label specific cells. The labeled cells can then be separated from the unlabeled ones in an electronic fluorescence-activated cell sorter. In this remarkable machine, individual cells traveling single file in a fine stream pass through a laser beam and the fluorescence of each cell is rapidly measured. A vibrating nozzle generates tiny droplets, most containing either one cell or no cells. The droplets containing a single cell are automatically given
a positive or a negative charge at the moment of formation, depending on whether the cell they contain is fluorescent; they are then deflected by a strong electric field into an appropriate container. Occasional clumps of cells, detected by their increased light scattering, are left uncharged and are discarded into a waste container. Such machines can accurately select 1 fluorescent cell from a pool of 1000 unlabeled cells and sort several thousand cells each second (Figure 8–2).

Selected cells can also be obtained by carefully dissecting them from thin tissue slices that have been prepared for microscopic examination (discussed in Chapter 9). In one approach, a tissue section is coated with a thin plastic film and a region containing the cells of interest is irradiated with a focused pulse from an infrared laser. This light pulse melts a small circle of the film, binding the cells underneath. These captured cells are then removed for further analysis. The technique, called laser capture microdissection, can be used to separate and analyze cells from different areas of a tumor, allowing their properties to be compared. A related method uses a laser beam to directly cut out a group of cells and catapult them into an appropriate container for future analysis (Figure 8–3).
Once a uniform population of cells has been obtained—by microdissection or by any of the separation methods just described—it can be used directly for biochemical analysis. A homogeneous cell sample also provides a starting material for cell culture, thereby allowing the number of cells to be greatly increased and their complex behavior to be studied under the strictly defined conditions of a culture dish.

Cells Can Be Grown in a Culture Dish

Given appropriate surroundings, most plant and animal cells can live, multiply, and even express differentiated properties in a tissue-culture dish. The cells can be watched continuously under the microscope or analyzed biochemically, and the effects of adding or removing specific molecules, such as hormones or growth factors, can be explored. In addition, by mixing two cell types, the interactions between one cell type and another can be studied. Experiments performed on cultured cells are sometimes said to be carried out in vitro (literally, “in glass”) to contrast them with experiments using intact organisms, which are said to be carried out in vivo (literally, “in the living organism”). These terms can be confusing, however, because they are often used in a very different sense by biochemists. In the biochemistry lab, in vitro refers to reactions carried out in a test tube in the absence of living cells, whereas in vivo refers to any reaction taking place inside a living cell (even cells that are growing in culture).

Tissue culture began in 1907 with an experiment designed to settle a controversy in neurobiology. The hypothesis under examination was known as the neuronal doctrine, which states that each nerve fiber is the outgrowth of a single nerve cell and not the product of the fusion of many cells. To test this contention, small pieces of spinal cord were placed on clotted tissue fluid in a warm, moist chamber and observed at regular intervals under the microscope. After a day or so, individual nerve cells could be seen extending long, thin filaments into the clot. Thus the neuronal doctrine received strong support, and the foundations for the cell-culture revolution were laid.

The original experiments on nerve fibers used cultures of small tissue fragments called explants. Today, cultures are more commonly made from suspensions of cells dissociated from tissues using the methods described earlier. Unlike bacteria, most tissue cells are not adapted to living in suspension and require a solid surface on which to grow and divide. For cell cultures, this support is usually provided by the surface of a plastic tissue-culture dish. Cells vary in their requirements, however, and many do not grow or differentiate unless the culture dish is coated with specific extracellular matrix components, such as collagen or laminin.

Cultures prepared directly from the tissues of an organism, that is, without cell proliferation in vitro, are called primary cultures. These can be made with or without an initial fractionation step to separate different cell types. In most cases, cells in primary cultures can be removed from the culture dish and made to proliferate to form a large number of so-called secondary cultures; in this way, they may be repeatedly subcultured for weeks or months. Such cells often display many of the differentiated properties appropriate to their origin: fibroblasts continue to secrete collagen; cells derived from embryonic skeletal muscle fuse to form muscle fibers that contract spontaneously in the culture dish; nerve cells extend axons that are electrically excitable and make synapses with other nerve cells; and epithelial cells form extensive sheets with many of the properties of an intact epithelium (Figure 8–4). Because these phenomena occur in culture, they are accessible to study in ways that are often not possible in intact tissues.

Serum-free, Chemically Defined Media Permit Identification of Specific Growth Factors

Until the early 1970s tissue culture seemed a blend of science and witchcraft. Although fluid clots were replaced by dishes of liquid media containing specified quantities of small molecules such as salts, glucose, amino acids, and vitamins,
most media also included either a poorly defined mixture of macromolecules in the form of horse or fetal calf serum, or a crude extract made from chick embryos. Such media are still used today for most routine cell culture (Table 8–1), but they make it difficult for the investigator to know which specific macromolecules a particular type of cell requires to thrive and to function normally.

This difficulty led to the development of various serum-free, chemically defined media. In addition to the usual small molecules, such defined media contain one or more specific proteins that the cells require to survive and proliferate in culture. These added proteins include growth factors, which stimulate cell proliferation, and transferrin, which carries iron into cells. Many of the extracellular protein signaling molecules essential for the survival, development, and

TABLE 8–1 Composition of a Typical Medium Suitable for the Cultivation of Mammalian Cells

<table>
<thead>
<tr>
<th>AMINO ACIDS</th>
<th>VITAMINS</th>
<th>SALTS</th>
<th>MISCELLANEOUS</th>
<th>PROTEINS (REQUIRED IN SERUM-FREE, CHEMICALLY DEFINED MEDIA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>biotin</td>
<td>NaCl</td>
<td>glucose</td>
<td>insulin</td>
</tr>
<tr>
<td>Cystine</td>
<td>choline</td>
<td>KCl</td>
<td>penicillin</td>
<td>transferrin</td>
</tr>
<tr>
<td>Glutamine</td>
<td>folate</td>
<td>NaH₂PO₄</td>
<td>streptomycin</td>
<td>specific growth factors</td>
</tr>
<tr>
<td>Histidine</td>
<td>nicotinamide</td>
<td>NaHCO₃</td>
<td>phenol red</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>pantothenate</td>
<td>CaCl₂</td>
<td>whole serum</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>pyridoxal</td>
<td>MgCl₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>thiamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>riboflavin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glucose is used at a concentration of 5–10 mM. The amino acids are all in the L form and, with one or two exceptions, are used at concentrations of 0.1 or 0.2 mM; vitamins are used at a 100-fold lower concentration, that is, about 1 μM. Serum, which is usually from horse or calf, is added to make up 10% of the total volume. Penicillin and streptomycin are antibiotics added to suppress the growth of bacteria. Phenol red is a pH indicator dye whose color is monitored to ensure a pH of about 7.4.

Cultures are usually grown in a plastic or glass container with a suitably prepared surface that allows the attachment of cells. The containers are kept in an incubator at 37°C in an atmosphere of 5% CO₂, 95% air.
proliferation of specific cell types were discovered by studies seeking minimal conditions under which the cell type behaved properly in culture. Thus, the search for new signaling molecules has been made much easier by the availability of chemically defined media.

Eucaryotic Cell Lines Are a Widely Used Source of Homogeneous Cells

Most vertebrate cells stop dividing after a finite number of cell divisions in culture, a process called cell senescence (discussed in Chapter 17). Normal human fibroblasts, for example, typically divide only 25–40 times in culture before they stop. In these cells, the limited proliferation capacity reflects a progressive shortening of the cell's telomeres, the repetitive DNA sequences and associated proteins that cap the ends of each chromosome (discussed in Chapter 5). Human somatic cells have turned off the enzyme, called telomerase, that normally maintains the telomeres, which is why their telomeres shorten with each cell division. Human fibroblasts can be coaxed to proliferate indefinitely by providing them with the gene that encodes the catalytic subunit of telomerase; they can then be propagated as an “immortalized” cell line.

Some human cells, however, are not immortalized by this trick. Although their telomeres remain long, they still stop dividing after a limited number of divisions because the culture conditions activate cell-cycle checkpoint mechanisms (discussed in Chapter 17) that arrest the cell cycle. In order to immortalize these cells, one has to do more than introduce telomerase. One must also inactivate the checkpoint mechanisms, which can be done by introducing certain cancer-promoting oncogenes derived from tumor viruses (discussed in Chapter 23). Unlike human cells, most rodent cells do not turn off telomerase and therefore their telomeres do not shorten with each cell division. In addition, rodent cells can undergo genetic changes in culture that inactivate their checkpoint mechanisms, thereby spontaneously producing immortalized cell lines.

Cell lines can often be most easily generated from cancer cells, but these cells differ from those prepared from normal cells in several ways. Cancer cell lines often grow without attaching to a surface, for example, and they can proliferate to a very much higher density in a culture dish. Similar properties can be induced experimentally in normal cells by transforming them with a tumor-inducing virus or chemical. The resulting transformed cell lines, in reciprocal fashion, can often cause tumors if injected into a susceptible animal. Both transformed and immortal cell lines are extremely useful in cell research as sources of very large numbers of cells of a uniform type, especially since they can be stored in liquid nitrogen at −196°C for an indefinite period and retain their viability when thawed. It is important to keep in mind, however, that the cells in both types of cell lines nearly always differ in important ways from their normal progenitors in the tissues from which they were derived. Some widely used cell lines are listed in Table 8–2.

Among the most promising cell cultures to be developed—from a medical point of view—are the human embryonic stem (ES) cell lines. These cells, harvested from the inner cell mass of the early embryo, can proliferate indefinitely while retaining the ability to give rise to any part of the body (discussed in Chapter 21). ES cells could potentially revolutionize medicine by providing a source of cells capable of replacing or repairing tissues that have been damaged by injury or disease.

Although all the cells in a cell line are very similar, they are often not identical. The genetic uniformity of a cell line can be improved by cell cloning, in which a single cell is isolated and allowed to proliferate to form a large colony. In such a colony, or clone, all the cells are descendents of a single ancestor cell. One of the most important uses of cell cloning has been the isolation of mutant cell lines with defects in specific genes. Studying cells that are defective in a specific protein often reveals valuable information about the function of that protein in normal cells.

Some important steps in the development of cell culture are listed in Table 8–3.
Cells Can Be Fused Together to Form Hybrid Cells

It is possible to fuse one cell with another to form a heterocaryon, a combined cell with two separate nuclei. Typically, a suspension of cells is treated with certain inactivated viruses or with polyethylene glycol, each of which alters the plasma membranes of cells in a way that induces them to fuse. Heterocaryons provide a way of mixing the components of two separate cells in order to study their interactions. The inert nucleus of a chicken red blood cell, for example, is reactivated to make RNA and eventually to replicate its DNA when it is exposed to the cytoplasm of a growing tissue-culture cell by fusion. The first direct evidence that membrane proteins are able to move in the plane of the plasma membrane (discussed in Chapter 10) came from an experiment in which mouse cells and human cells were fused: although the mouse and human cell-surface proteins were initially confined to their own halves of the heterocaryon plasma membrane, they quickly diffused and mixed over the entire surface of the cell.

Eventually, a heterocaryon proceeds to mitosis and produces a hybrid cell in which the two separate nuclear envelopes have been disassembled, allowing all the chromosomes to be brought together in a single large nucleus (Figure 8–5). Although such hybrid cells can be cloned to produce hybrid cell lines, the cells tend to lose chromosomes and are therefore genetically unstable. For unknown reasons, mouse–human hybrid cells predominantly lose human chromosomes. These chromosomes are lost at random, giving rise to a variety of mouse–human hybrid cell lines, each of which contains only one or a few human chromosomes. This phenomenon has been put to good use in mapping the locations of genes in the human genome: only hybrid cells containing human chromosome 11, for example, synthesize human insulin, indicating that the gene encoding insulin is located on chromosome 11. The same hybrid cells are also used as a source of human DNA for preparing chromosome-specific human DNA libraries.

TABLE 8–2 Some Commonly Used Cell Lines

<table>
<thead>
<tr>
<th>CELL LINE</th>
<th>CELL TYPE AND ORIGIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3T3</td>
<td>fibroblast (mouse)</td>
</tr>
<tr>
<td>BHK21</td>
<td>fibroblast (Syrian hamster)</td>
</tr>
<tr>
<td>MDCK</td>
<td>epithelial cell (dog)</td>
</tr>
<tr>
<td>HeLa</td>
<td>epithelial cell (human)</td>
</tr>
<tr>
<td>PtK1</td>
<td>epithelial cell (rat kangaroo)</td>
</tr>
<tr>
<td>L6</td>
<td>myoblast (rat)</td>
</tr>
<tr>
<td>PC12</td>
<td>chromaffin cell (rat)</td>
</tr>
<tr>
<td>SP2</td>
<td>plasma cell (mouse)</td>
</tr>
<tr>
<td>COS</td>
<td>kidney (monkey)</td>
</tr>
<tr>
<td>293</td>
<td>kidney (human); transformed with adenovirus</td>
</tr>
<tr>
<td>CHO</td>
<td>ovary (chinese hamster)</td>
</tr>
<tr>
<td>DT40</td>
<td>lymphoma cell for efficient targeted recombination (chick)</td>
</tr>
<tr>
<td>R1</td>
<td>embryonic stem cells (mouse)</td>
</tr>
<tr>
<td>E14.1</td>
<td>embryonic stem cells (mouse)</td>
</tr>
<tr>
<td>H1, H9</td>
<td>embryonic stem cells (human)</td>
</tr>
<tr>
<td>S2</td>
<td>macrophage-like cells (Drosophila)</td>
</tr>
<tr>
<td>BY2</td>
<td>undifferentiated meristematic cells (tobacco)</td>
</tr>
</tbody>
</table>

Many of these cell lines were derived from tumors. All of them are capable of indefinite replication in culture and express at least some of the special characteristics of their cell of origin. BHK21 cells, HeLa cells, and SP2 cells are capable of efficient growth in suspension; most of the other cell lines require a solid culture substratum in order to multiply.
Hybridoma Cell Lines Provide a Permanent Source of Monoclonal Antibodies

In 1975 the development of a special type of hybrid cell line revolutionized the production of antibodies for use as tools in cell biology. The technique involves propagating a clone of cells from a single antibody-secreting B lymphocyte so that a homogeneous preparation of antibodies can be obtained in large quantities. The practical problem, however, is that B lymphocytes normally have a limited life-span in culture. To overcome this limitation, individual antibody-producing B lymphocytes from an immunized mouse or rat are fused with cells derived from an “immortal” B lymphocyte tumor. From the resulting heterogeneous mixture of hybrid cells, those hybrids that have both the ability to make a particular antibody and the ability to multiply indefinitely in culture are selected. These **hybridomas** are propagated as individual clones, each of which provides a permanent and stable source of a single type of **monoclonal antibody** (Figure 8–6). This antibody recognizes a single type of antigenic site—for example, a particular cluster of five or six amino acid side chains on the surface of a protein. Their uniform specificity makes monoclonal antibodies much more useful for most purposes than conventional antisera, which generally contain a mixture of

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1885</td>
<td>Roux shows that embryonic chick cells can be maintained alive in a saline solution outside the animal body.</td>
</tr>
<tr>
<td>1907</td>
<td>Harrison cultivates amphibian spinal cord in a lymph clot, thereby demonstrating that axons are produced as extensions of single nerve cells.</td>
</tr>
<tr>
<td>1910</td>
<td>Rous induces a tumor by using a filtered extract of chicken tumor cells, later shown to contain an RNA virus (Rous sarcoma virus).</td>
</tr>
<tr>
<td>1913</td>
<td>Carrel shows that cells can grow for long periods in culture provided they are fed regularly under aseptic conditions.</td>
</tr>
<tr>
<td>1948</td>
<td>Earle and colleagues isolate single cells of the L cell line and show that they form clones of cells in tissue culture.</td>
</tr>
<tr>
<td>1952</td>
<td>Gey and colleagues establish a continuous line of cells derived from a human cervical carcinoma, which later become the well-known HeLa cell line.</td>
</tr>
<tr>
<td>1954</td>
<td>Levi-Montalcini and associates show that nerve growth factor (NGF) stimulates the growth of axons in tissue culture.</td>
</tr>
<tr>
<td>1955</td>
<td>Eagle makes the first systematic investigation of the essential nutritional requirements of cells in culture and finds that animal cells can propagate in a defined mixture of small molecules supplemented with a small proportion of serum proteins.</td>
</tr>
<tr>
<td>1956</td>
<td>Puck and associates select mutants with altered growth requirements from cultures of HeLa cells.</td>
</tr>
<tr>
<td>1958</td>
<td>Temin and Rubin develop a quantitative assay for the infection of chick cells in culture by purified Rous sarcoma virus. In the following decade the characteristics of this and other types of viral transformation are established by Stoker, Dulbecco, Green, and other virologists.</td>
</tr>
<tr>
<td>1961</td>
<td>Hayflick and Moorhead show that human fibroblasts die after a finite number of divisions in culture.</td>
</tr>
<tr>
<td>1964</td>
<td>Littlefield introduces HAT medium for the selective growth of somatic cell hybrids. Together with the technique of cell fusion, this makes somatic-cell genetics accessible.</td>
</tr>
<tr>
<td>1965</td>
<td>Ham introduces a defined, serum-free medium able to support the clonal growth of certain mammalian cells.</td>
</tr>
<tr>
<td>1975</td>
<td>Köhler and Milstein produce the first monoclonal antibody-secreting hybridoma cell lines.</td>
</tr>
<tr>
<td>1976</td>
<td>Sato and associates publish the first of a series of papers showing that different cell lines require different mixtures of hormones and growth factors to grow in serum-free medium.</td>
</tr>
<tr>
<td>1986</td>
<td>Martin and Evans and colleagues isolate and culture pluripotent embryonic stem cells from mouse.</td>
</tr>
<tr>
<td>1998</td>
<td>Thomson and Gearhart and their associates isolate human embryonic stem cells.</td>
</tr>
</tbody>
</table>
antibodies that recognize a variety of different antigenic sites on a macromolecule.

The most important advantage of the hybridoma technique is that monoclonal antibodies can be made against molecules that constitute only a minor component of a complex mixture. In an ordinary antiserum made against such a mixture, the proportion of antibody molecules that recognize the minor

Figure 8–5 The production of hybrid cells. Human cells and mouse cells are fused to produce heterocaryons (each with two or more nuclei), which eventually form hybrid cells (each with one fused nucleus). These particular hybrid cells are useful for mapping human genes on specific human chromosomes because most of the human chromosomes are quickly lost in a random manner, leaving clones that retain only one or a few. The hybrid cells produced by fusing other types of cells often retain most of their chromosomes.

Figure 8–6 Preparation of hybridomas that secrete monoclonal antibodies against a particular antigen. Here the antigen of interest is designated as “antigen X.” The selective growth medium used after the cell fusion step contains an inhibitor (aminopterin) that blocks the normal biosynthetic pathways by which nucleotides are made. The cells must therefore use a bypass pathway to synthesize their nucleic acids. This pathway is defective in the mutant cell line derived from the tumor, but it is intact in the cells obtained from the immunized mouse. Because neither cell type used for the initial fusion can grow on its own, only the hybrid cells survive.

ISOLATING CELLS AND GROWING THEM IN CULTURE

477
component would be too small to be useful. But if the B lymphocytes that produce the various components of this antiserum are made into hybridomas, it becomes possible to screen individual hybridoma clones from the large mixture to select one that produces the desired type of monoclonal antibody and to propagate the selected hybridoma indefinitely so as to produce that antibody in unlimited quantities. In principle, therefore, a monoclonal antibody can be made against any protein in a biological sample.

Once an antibody has been made, it can be used as a specific probe—both to track down and localize its protein antigen and to purify that protein in order to study its structure and function. Because only a small fraction of the estimated 10,000–20,000 proteins in a typical mammalian cell have thus far been isolated, many monoclonal antibodies made against impure protein mixtures in fractionated cell extracts identify new proteins. With the use of monoclonal antibodies and the rapid protein identification methods we shall describe shortly, it is no longer difficult to identify and characterize novel proteins and genes. The major problem is instead to determine their function, using a set of powerful tools that we discuss in the last sections of this chapter.

Summary

Tissues can be dissociated into their component cells, from which individual cell types can be purified and used for biochemical analysis or for the establishment of cell cultures. Many animal and plant cells survive and proliferate in a culture dish if they are provided with a suitable medium containing nutrients and specific protein growth factors. Although many animal cells stop dividing after a finite number of cell divisions, cells that have been immortalized through spontaneous mutations or genetic manipulation can be maintained indefinitely in cell lines. Clones can be derived from a single ancestor cell, making it possible to isolate uniform populations of mutant cells with defects in a single protein. Two cells can be fused to produce heterocaryons with two nuclei, enabling interactions between the components of the original two cells to be examined. Heterocaryons eventually form hybrid cells with a single fused nucleus. Because such cells lose chromosomes, they can provide a convenient method for assigning genes to specific chromosomes. One type of hybrid cell, called a hybridoma, is widely employed to produce unlimited quantities of uniform monoclonal antibodies, which are widely used to detect and purify cellular proteins.

FRACTIONATION OF CELLS

Although biochemical analysis requires disruption of the anatomy of the cell, gentle fractionation techniques have been devised to separate the various cell components while preserving their individual functions. Just as a tissue can be separated into its living constituent cell types, so the cell can be separated into its functioning organelles and macromolecules. In this section we consider the methods that allow organelles and proteins to be purified and analyzed biochemically.

Organelles and Macromolecules Can Be Separated by Ultracentrifugation

Cells can be broken up in various ways: they can be subjected to osmotic shock or ultrasonic vibration, forced through a small orifice, or ground up in a blender. These procedures break many of the membranes of the cell (including the plasma membrane and membranes of the endoplasmic reticulum) into fragments that immediately reseal to form small closed vesicles. If carefully applied, however, the disruption procedures leave organelles such as nuclei, mitochondria, the Golgi apparatus, lysosomes, and peroxisomes largely intact. The suspension of cells is thereby reduced to a thick slurry (called a homogenate or extract) that contains a variety of membrane-enclosed organelles, each with a distinctive
Provided that the homogenization medium has been carefully chosen (by trial and error for each organelle), the various components—including the vesicles derived from the endoplasmic reticulum, called microsomes—retain most of their original biochemical properties.

The different components of the homogenate must then be separated. Such cell fractionations became possible only after the commercial development in the early 1940s of an instrument known as the preparative ultracentrifuge, in which extracts of broken cells are rotated at high speeds (Figure 8–7). This treatment separates cell components by size and density: in general, the largest units experience the largest centrifugal force and move the most rapidly. At relatively low speed, large components such as nuclei sediment to form a pellet at the bottom of the centrifuge tube; at slightly higher speed, a pellet of mitochondria is deposited; and at even higher speeds and with longer periods of centrifugation, first the small closed vesicles and then the ribosomes can be collected (Figure 8–8). All of these fractions are impure, but many of the contaminants can be removed by resuspending the pellet and repeating the centrifugation procedure several times.

Centrifugation is the first step in most fractionations, but it separates only components that differ greatly in size. A finer degree of separation can be achieved by layering the homogenate in a thin band on top of a dilute salt solution that fills a centrifuge tube. When centrifuged, the various components in the mixture move as a series of distinct bands through the salt solution, each at a different rate, in a process called velocity sedimentation (Figure 8–9A). For the procedure to work effectively, the bands must be protected from convective mixing, which would normally occur whenever a denser solution (for example, one containing organelles) finds itself on top of a lighter one (the salt solution). This is achieved by filling the centrifuge tube with a shallow gradient of sucrose prepared by a special mixing device. The resulting density gradient—with the dense end at the bottom of the tube—keeps each region of the salt solution denser than any solution above it, and it thereby prevents convective mixing from distorting the separation.

When sedimented through such dilute sucrose gradients, different cell components separate into distinct bands that can be collected individually. The relative rate at which each component sediments depends primarily on its size and shape—being normally described in terms of its sedimentation coefficient, or s value. Present-day ultracentrifuges rotate at speeds of up to 80,000 rpm and produce forces as high as 500,000 times gravity. With these enormous forces, even small macromolecules, such as tRNA molecules and simple enzymes, can be driven to sediment at an appreciable rate and so can be separated from one another by size. Measurements of sedimentation coefficients are routinely used to help in determining the size and subunit composition of the organized assemblies of macromolecules found in cells.

The ultracentrifuge is also used to separate cellular components on the basis of their buoyant density, independently of their size and shape. In this case the
sample is usually sedimented through a steep density gradient that contains a very high concentration of sucrose or cesium chloride. Each cellular component begins to move down the gradient as in Figure 8–9A, but it eventually reaches a position where the density of the solution is equal to its own density. At this point the component floats and can move no farther. A series of distinct bands is thereby produced in the centrifuge tube, with the bands closest to the bottom of the tube containing the components of highest buoyant density (Figure 8–9B). This method, called equilibrium sedimentation, is so sensitive that it is capable of separating macromolecules that have incorporated heavy isotopes, such as 13C or 15N, from the same macromolecules that contain the lighter, common isotopes (12C or 14N). In fact, the cesium-chloride method was developed in 1957 to separate the labeled from the unlabeled DNA produced after exposure of a growing population of bacteria to nucleotide precursors containing 15N; this classic experiment provided direct evidence for the semiconservative replication of DNA (see Figure 5–5).

The Molecular Details of Complex Cellular Processes Can Be Deciphered in Cell-Free Systems

Studies of organelles and other large subcellular components isolated in the ultracentrifuge have contributed enormously to our understanding of the functions of different cellular components. Experiments on mitochondria and chloroplasts purified by centrifugation, for example, demonstrated the central function of these organelles in converting energy into forms that the cell can use. Similarly, resealed vesicles formed from fragments of rough and smooth endoplasmic reticulum (microsomes) have been separated from each other and analyzed as functional models of these compartments of the intact cell.
An extension of this approach makes it possible to study many other biological processes free from all of the complex side reactions that occur in a living cell, by using purified cell-free systems. In this case, cell homogenates are fractionated with the aim of purifying each of the individual macromolecules that are needed to catalyze a biological process of interest. For example, the mechanisms of protein synthesis were deciphered in experiments that began with a cell homogenate that could translate RNA molecules to produce proteins. Fractionation of this homogenate, step by step, produced in turn the ribosomes, tRNAs, and various enzymes that together constitute the protein-synthetic machinery. Once individual pure components were available, each could be added or withheld separately to define its exact role in the overall process. A major goal today is the reconstitution of every biological process in a purified cell-free system, so as to be able to define all of its components and their mechanism of action. Some landmarks in the development of this critical approach for understanding the cell are listed in Table 8–4.

Much of what we know about the molecular biology of the cell has been discovered by studying cell-free systems. As a few of many examples, they have been used to decipher the molecular details of DNA replication and DNA transcription, RNA splicing, protein translation, muscle contraction, and particle transport along microtubules. Cell-free systems have even been used to study such complex and highly organized processes as the cell-division cycle, the separation of chromosomes on the mitotic spindle, and the vesicular-transport steps involved in the movement of proteins from the endoplasmic reticulum through the Golgi apparatus to the plasma membrane.

Cell homogenates also provide, in principle, the starting material for the complete separation of all of the individual macromolecular components from the cell. We now consider how this separation is achieved, focusing on proteins.

Proteins Can Be Separated by Chromatography

Proteins are most often fractionated by column chromatography, in which a mixture of proteins in solution is passed through a column containing a porous solid matrix. The different proteins are retarded to different extents by their

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1897</td>
<td>Buchner shows that cell-free extracts of yeast can ferment sugars to form carbon dioxide and ethanol, laying the foundations of enzymology.</td>
</tr>
<tr>
<td>1926</td>
<td>Svedberg develops the first analytical ultracentrifuge and uses it to estimate the mass of hemoglobin as 68,000 daltons.</td>
</tr>
<tr>
<td>1935</td>
<td>Pickels and Beams introduce several new features of centrifuge design that lead to its use as a preparative instrument.</td>
</tr>
<tr>
<td>1938</td>
<td>Behrens employs differential centrifugation to separate nuclei and cytoplasm from liver cells, a technique further developed for the fractionation of cell organelles by Claude, Brachet, Hogeboom, and others in the 1940s and early 1950s.</td>
</tr>
<tr>
<td>1939</td>
<td>Hill shows that isolated chloroplasts, when illuminated, can perform the reactions of photosynthesis.</td>
</tr>
<tr>
<td>1949</td>
<td>Szent-Györgyi shows that isolated myofibrils from skeletal muscle cells contract upon the addition of ATP. In 1955 a similar cell-free system was developed for ciliary beating by Hofmann-Berling.</td>
</tr>
<tr>
<td>1951</td>
<td>Brakke uses density-gradient centrifugation in sucrose solutions to purify a plant virus.</td>
</tr>
<tr>
<td>1954</td>
<td>de Duve isolates lysosomes and, later, peroxisomes by centrifugation.</td>
</tr>
<tr>
<td>1954</td>
<td>Zamecnik and colleagues develop the first cell-free system to perform protein synthesis. A decade of intense research activity, during which the genetic code is elucidated, follows.</td>
</tr>
<tr>
<td>1957</td>
<td>Meselson, Stahl, and Vinograd develop equilibrium density-gradient centrifugation in cesium chloride solutions for separating nucleic acids.</td>
</tr>
<tr>
<td>1975</td>
<td>Dobberstein and Blobel demonstrate protein translocation across membranes in a cell-free system.</td>
</tr>
<tr>
<td>1976</td>
<td>Neher and Sakmann develop patch-clamp recording to measure the activity of single ion channels.</td>
</tr>
<tr>
<td>1983</td>
<td>Lohka and Masui make concentrated extracts from frog eggs that performs the entire cell cycle in vitro.</td>
</tr>
<tr>
<td>1984</td>
<td>Rothman and colleagues reconstitute Golgi vesicle trafficking in vitro with a cell-free system.</td>
</tr>
</tbody>
</table>
interaction with the matrix, and they can be collected separately as they flow out of the bottom of the column (Figure 8–10). Depending on the choice of matrix, proteins can be separated according to their charge (ion-exchange chromatography), their hydrophobicity (hydrophobic chromatography), their size (gel-filtration chromatography), or their ability to bind to particular small molecules or to other macromolecules (affinity chromatography).

Many types of matrices are commercially available (Figure 8–11). Ion-exchange columns are packed with small beads that carry either a positive or negative charge, so that proteins are fractionated according to the arrangement of charges on their surface. Hydrophobic columns are packed with beads from which hydrophobic side chains protrude, so that proteins with exposed hydrophobic regions are retarded. Gel-filtration columns, which separate proteins according to their size, are packed with tiny porous beads: molecules that are small enough to enter the pores linger inside successive beads as they pass down the column, while larger molecules remain in the solution flowing between the beads and therefore move more rapidly, emerging from the column first. Besides providing a means of separating molecules, gel-filtration chromatography is a convenient way to determine their size.

The resolution of conventional column chromatography is limited by inhomogeneities in the matrices (such as cellulose), which cause an uneven flow of solvent through the column. Newer chromatography resins (usually silica-based) have been developed in the form of tiny spheres (3 to 10 μm in diameter) that can be packed with a special apparatus to form a uniform column bed. A high degree of resolution is attainable on such high-performance liquid chromatography (HPLC) columns. Because they contain such tightly packed particles, HPLC columns have negligible flow rates unless high pressures are applied. For this reason these columns are typically packed in steel cylinders and require an elaborate system of pumps and valves to force the solvent through them at sufficient pressure to produce the desired rapid flow rates of about one column volume per minute. In conventional column chromatography, flow rates must be kept slow (often about one column volume per hour) to give the solutes being fractionated time to equilibrate with the interior of the large matrix particles. In HPLC the solutes equilibrate very rapidly with the interior of the tiny spheres, so solutes with different affinities for the matrix are efficiently separated from one another even at fast flow rates. This allows most fractionations to be carried out in minutes, whereas hours are required to obtain a
poorer separation by conventional chromatography. HPLC has therefore become the method of choice for separating many proteins and small molecules.

Affinity Chromatography Exploits Specific Binding Sites on Proteins

If one starts with a complex mixture of proteins, these types of column chromatography do not produce very highly purified fractions: a single passage through the column generally increases the proportion of a given protein in the mixture no more than twentyfold. Because most individual proteins represent less than 1/1000 of the total cellular protein, it is usually necessary to use several different types of column in succession to attain sufficient purity (Figure 8–12).

A more efficient procedure, known as *affinity chromatography*, takes advantage of the biologically important binding interactions that occur on protein surfaces. If a substrate molecule is covalently coupled to an inert matrix such as a polysaccharide bead, for example, the enzyme that operates on that substrate will often be specifically retained by the matrix and can then be eluted (washed out) in nearly pure form. Likewise, short DNA oligonucleotides of a specifically designed sequence can be immobilized in this way and used to purify DNA-binding proteins that normally recognize this sequence of nucleotides in chromosomes (see Figure 7–30). Alternatively, specific antibodies can be coupled to a matrix to purify protein molecules recognized by the antibodies. Because of the great specificity of all such affinity columns, 1000- to 10,000-fold purifications can sometimes be achieved in a single pass.

Any gene can be modified, using the recombinant DNA methods discussed in the next section, to produce its protein with a molecular tag attached to it, making subsequent purification of the protein by affinity chromatography simple and rapid (see Figure 8–48, below). For example, the amino acid histidine

![Figure 8–11 Three types of matrices used for chromatography.](image)

(A) ION-EXCHANGE CHROMATOGRAPHY
(B) GEL-FILTRATION CHROMATOGRAPHY
(C) AFFINITY CHROMATOGRAPHY

Figure 8–11 Three types of matrices used for chromatography. In ion-exchange chromatography (A) the insoluble matrix carries ionic charges that retard the movement of molecules of opposite charge. Matrices used for separating proteins include diethylaminoethylcellulose (DEAE-cellulose), which is positively charged, and carboxymethylcellulose (CM-cellulose) and phosphocellulose, which are negatively charged. Analogous matrices based on agarose or other polymers are also frequently used. The strength of the association between the dissolved molecules and the ion-exchange matrix depends on both the ionic strength and the pH of the solution that is passing down the column, which may therefore be varied systematically (as in Figure 8–12) to achieve an effective separation. In gel-filtration chromatography (B) the matrix is inert but porous. Molecules that are small enough to penetrate into the matrix are thereby delayed and travel more slowly through the column. Beads of cross-linked polysaccharide (dextran, agarose, or acrylamide) are available commercially in a wide range of pore sizes, making them suitable for the fractionation of molecules of various molecular weights, from less than 500 to more than 5 × 10^6. Affinity chromatography (C) uses an insoluble matrix that is covalently linked to a specific ligand, such as an antibody molecule or an enzyme substrate, that will bind a specific protein. Enzyme molecules that bind to immobilized substrates on such columns can be eluted with a concentrated solution of the free form of the substrate molecule, while molecules that bind to immobilized antibodies can be eluted by dissociating the antibody–antigen complex with concentrated salt solutions or solutions of high or low pH. High degrees of purification are often achieved in a single pass through an affinity column.
binds to certain metal ions, including nickel and copper. If genetic engineering techniques are used to attach a short string of histidine residues to either end of a protein, the slightly modified protein can be retained selectively on an affinity column containing immobilized nickel ions. Metal affinity chromatography can thereby be used to purify that modified protein from a complex molecular mixture. In other cases, an entire protein is used as the molecular tag. When the small enzyme glutathione S-transferase (GST) is attached to a target protein, the resulting fusion protein can be purified using an affinity column containing glutathione, a substrate molecule that binds specifically and tightly to GST (see Figure 8–50, below).

As a further refinement of this last technique, an amino acid sequence that forms a cleavage site for a highly specific protease can be engineered between the protein of choice and the histidine or GST tag. The cleavage sites for the proteases that are used, such as factor X that functions during blood clotting, are very rarely found by chance in proteins. Thus, the tag can later be specifically removed by cleavage at the cleavage site without destroying the purified protein.

Figure 8–12 Protein purification by chromatography. Typical results obtained when three different chromatographic steps are used in succession to purify a protein. In this example a homogenate of cells was first fractionated by allowing it to percolate through an ion-exchange resin packed into a column (A). The column was washed, and the bound proteins were then eluted by passing a solution containing a gradually increasing concentration of salt onto the top of the column. Proteins with the lowest affinity for the ion-exchange resin passed directly through the column and were collected in the earliest fractions eluted from the bottom of the column. The remaining proteins were eluted in sequence according to their affinity for the resin—those proteins binding most tightly to the resin requiring the highest concentration of salt to remove them. The protein of interest was eluted in several fractions and was detected by its enzymatic activity. The fractions with activity were pooled and then applied to a second, gel-filtration column (B). The elution position of the still-impure protein was again determined by its enzymatic activity and the active fractions were pooled and purified to homogeneity on an affinity column (C) that contained an immobilized substrate of the enzyme.

(D) Affinity purification of cyclin-binding proteins from *S. cerevisiae*, as analyzed by SDS polyacrylamide-gel electrophoresis (see Figure 8–14). Lane 1 is a total cell extract; lane 2 shows the proteins eluted from an affinity column containing cyclin B2; lane 3 shows one major protein eluted from a cyclin B3 affinity column. Proteins in lanes 2 and 3 were eluted with salt and the gels was stained with Coomassie blue.

The Size and Subunit Composition of a Protein Can Be Determined by SDS Polyacrylamide-Gel Electrophoresis

Proteins usually possess a net positive or negative charge, depending on the mixture of charged amino acids they contain. When an electric field is applied to a solution containing a protein molecule, the protein migrates at a rate that depends on its net charge and on its size and shape. This technique, known as electrophoresis, was originally used to separate mixtures of proteins either in free aqueous solution or in solutions held in a solid porous matrix such as starch.

In the mid-1960s a modified version of this method—which is known as SDS polyacrylamide-gel electrophoresis (SDS-PAGE)—was developed that has revolutionized routine protein analysis. It uses a highly cross-linked gel of polyacrylamide as the inert matrix through which the proteins migrate. The gel is prepared by polymerization from monomers; the pore size of the gel can be adjusted so that it is small enough to retard the migration of the protein molecules of interest. The proteins themselves are not in a simple aqueous solution but in one that includes a powerful negatively charged detergent, sodium dodecyl sulfate, or SDS (Figure 8–13). Because this detergent binds to hydrophobic regions of the protein molecules, causing them to unfold into extended polypeptide chains, the individual protein molecules are released from their associations with other proteins or lipid molecules and rendered freely soluble in the detergent solution. In addition, a reducing agent such as β-mercaptoethanol (see Figure 8–13) is usually added to break any S–S linkages in the proteins, so that all of the constituent polypeptides in multisubunit molecules can be analyzed separately.

What happens when a mixture of SDS-solubilized proteins is run through a slab of polyacrylamide gel? Each protein molecule binds large numbers of the negatively charged detergent molecules, which mask the protein’s intrinsic charge and cause it to migrate toward the positive electrode when a voltage is applied. Proteins of the same size tend to move through the gel with similar speeds because (1) their native structure is completely unfolded by the SDS, so that their shapes are the same, and (2) they bind the same amount of SDS and therefore have the same amount of negative charge. Larger proteins, with more charge, will be subjected to larger electrical forces and also to a larger drag. In free solution the two effects would cancel out, but in the mesh of the polyacrylamide gel, which acts as a molecular sieve, large proteins are retarded much more than small ones. As a result, a complex mixture of proteins is fractionated into a series of discrete protein bands arranged in order of molecular weight (Figure 8–14). The major proteins are readily detected by staining the proteins in the gel with a dye such as Coomassie blue, and even minor proteins are seen in gels treated with a silver or gold stain (with which as little as 10 ng of protein can be detected in a band).

SDS polyacrylamide-gel electrophoresis is a more powerful procedure than any previous method of protein analysis principally because it can be used to separate all types of proteins, including those that are insoluble in water. Membrane proteins, protein components of the cytoskeleton, and proteins that are part of large macromolecular aggregates can all be resolved. Because the method separates polypeptides by size, it also provides information about the molecular weight and the subunit composition of any protein complex. A photograph of a gel that has been used to analyze each of the successive stages in the purification of a protein is shown in Figure 8–15.

More Than 1000 Proteins Can Be Resolved on a Single Gel by Two-dimensional Polyacrylamide-Gel Electrophoresis

Because closely spaced protein bands or peaks tend to overlap, one-dimensional separation methods, such as SDS polyacrylamide-gel electrophoresis or chromatography, can resolve only a relatively small number of proteins (generally fewer than 50). In contrast, two-dimensional gel electrophoresis, which

Figure 8–13 The detergent sodium dodecyl sulfate (SDS) and the reducing agent β-mercaptoethanol. These two chemicals are used to solubilize proteins for SDS polyacrylamide-gel electrophoresis. The SDS is shown here in its ionized form.
Figure 8–15 Analysis of protein samples by SDS polyacrylamide-gel electrophoresis (SDS-PAGE). The photograph shows a Coomassie-stained gel that has been used to detect the proteins present at successive stages in the purification of an enzyme. The leftmost lane (lane 1) contains the complex mixture of proteins in the starting cell extract, and each succeeding lane analyzes the proteins obtained after a chromatographic fractionation of the protein sample analyzed in the previous lane (see Figure 8–12). The same total amount of protein (10 μg) was loaded onto the gel at the top of each lane. Individual proteins normally appear as sharp, dye-stained bands; a band broadens, however, when it contains too much protein. (From T. Formosa and B.M. Alberts, J. Biol. Chem. 261:6107–6118, 1986.)
In the second step the narrow gel containing the separated proteins is again subjected to electrophoresis but in a direction that is at a right angle to the direction that used in the first step. This time SDS is added, and the proteins are separated according to their size, as in one-dimensional SDS-PAGE: the original narrow gel is soaked in SDS and then placed on one edge of an SDS polyacrylamide-gel slab, through which each polypeptide chain migrates to form a discrete spot. This is the second dimension of two-dimensional polyacrylamide-gel electrophoresis. The only proteins left unresolved are those that have both identical sizes and identical isoelectric points, a relatively rare situation. Even trace amounts of each polypeptide chain can be detected on the gel by various staining procedures—or by autoradiography if the protein sample was initially labeled with a radioisotope (Figure 8–17). The technique has such great resolving power that it can distinguish between two proteins that differ in only a single charged amino acid.

A specific protein can be identified after its fractionation on either one-dimensional or two-dimensional gels by exposing all the proteins present on the gel to a specific antibody that has been coupled to a radioactive isotope, to an easily detectable enzyme, or to a fluorescent dye. For convenience, this is normally done after all the separated proteins present in the gel have been transferred (by “blotting”) onto a sheet of nitrocellulose paper, as described later for nucleic acids (see Figure 8–27). This protein-detection method is called Western blotting (Figure 8–18).

Some landmarks in the development of chromatography and electrophoresis are listed in Table 8–5.

Figure 8–16 Separation of protein molecules by isoelectric focusing. At low pH (high H⁺ concentration) the carboxylic acid groups of proteins tend to be uncharged (–COOH) and their nitrogen-containing basic groups fully charged (for example, –NH₃⁺), giving most proteins a net positive charge. At high pH the carboxylic acid groups are negatively charged (–COO⁻) and the basic groups tend to be uncharged (for example, –NH₂), giving most proteins a net negative charge. At its isoelectric pH a protein has no net charge since the positive and negative charges balance. Thus, when a tube containing a fixed pH gradient is subjected to a strong electric field in the appropriate direction, each protein species present migrates until it forms a sharp band at its isoelectric pH, as shown.

Figure 8–17 Two-dimensional polyacrylamide-gel electrophoresis. All the proteins in an E. coli bacterial cell are separated in this gel, in which each spot corresponds to a different polypeptide chain. The proteins were first separated on the basis of their isoelectric points by isoelectric focusing from left to right. They were then further fractionated according to their molecular weights by electrophoresis from top to bottom in the presence of SDS. Note that different proteins are present in very different amounts. The bacteria were fed with a mixture of radioisotope-labeled amino acids so that all of their proteins were radioactive and could be detected by autoradiography (see pp. 578–579). (Courtesy of Patrick O'Farrell.)
Selective Cleavage of a Protein Generates a Distinctive Set of Peptide Fragments

Although proteins have distinctive molecular weights and isoelectric points, unambiguous identification ultimately depends on determining their amino acid sequences. This can be most easily accomplished by determining the nucleotide sequence of the gene encoding the protein and using the genetic code to deduce the amino acid sequence of the protein, as discussed later in this chapter. It can also be done by directly analyzing the protein, although the complete amino acid sequences of proteins are rarely determined directly today.

There are several more rapid techniques that are used to reveal crucial information about the identity of purified proteins. For example, simply cleaving the protein into smaller fragments can provide information that helps to characterize the molecule. Proteolytic enzymes and chemical reagents are available that cleave proteins between specific amino acid residues (Table 8–6). The enzyme trypsin, for instance, cuts on the carboxyl side of lysine or arginine residues, whereas the chemical cyanogen bromide cuts peptide bonds next to methionine residues. Because these enzymes and chemicals cleave at relatively few sites, they tend to produce a few relatively large peptides when applied to a purified protein. If such a mixture of peptides is separated by chromatographic or electrophoretic procedures, the resulting pattern, or peptide map, is diagnostic of...

TABLE 8–5 Landmarks in the Development of Chromatography and Electrophoresis and their Applications to Protein Molecules

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1833</td>
<td>Faraday describes the fundamental laws concerning the passage of electricity through ionic solutions.</td>
</tr>
<tr>
<td>1850</td>
<td>Runge separates inorganic chemicals by their differential adsorption to paper, a forerunner of later chromatographic separations.</td>
</tr>
<tr>
<td>1906</td>
<td>Tswett invents column chromatography, passing petroleum extracts of plant leaves through columns of powdered chalk.</td>
</tr>
<tr>
<td>1933</td>
<td>Tiselius introduces electrophoresis for separating proteins in solution.</td>
</tr>
<tr>
<td>1942</td>
<td>Martin and Synge develop partition chromatography, leading to paper chromatography on ion-exchange resins.</td>
</tr>
<tr>
<td>1946</td>
<td>Stein and Moore determine for the first time the amino acid composition of a protein, initially using column chromatography on starch and later developing chromatography on ion-exchange resins.</td>
</tr>
<tr>
<td>1955</td>
<td>Smithies uses gels made of starch to separate proteins by electrophoresis.</td>
</tr>
<tr>
<td>1956</td>
<td>Sanger completes the analysis of the amino acid sequence of bovine insulin, the first protein to be sequenced.</td>
</tr>
<tr>
<td>1959</td>
<td>Ingram produces the first protein fingerprints, showing that the difference between sickle-cell and normal hemoglobin is due to a change in a single amino acid.</td>
</tr>
<tr>
<td>1959</td>
<td>Raymond introduces polyacrylamide gels, which are superior to starch gels for separating proteins by electrophoresis; improved buffer systems allowing high-resolution separations are developed in the next few years by Ornstein and Davis.</td>
</tr>
<tr>
<td>1966</td>
<td>Maizel introduces the use of sodium dodecyl sulfate (SDS) for improving the polyacrylamide-gel electrophoresis of proteins.</td>
</tr>
<tr>
<td>1975</td>
<td>O’Farrell devises a two-dimensional gel system for analyzing protein mixtures in which SDS polyacrylamide-gel electrophoresis is combined with separation according to isoelectric point.</td>
</tr>
</tbody>
</table>

![Western blotting](image)
the protein from which the peptides were generated and is sometimes referred to as the protein’s “fingerprint” (Figure 8–19).

Protein fingerprinting was developed in 1956 to compare normal hemoglobin with the mutant form of the protein found in patients suffering from sickle-cell anemia. A single peptide difference was found and was eventually traced to a single amino acid change, providing the first demonstration that a mutation can change a single amino acid in a protein. Nowadays it is most often used to map the position of posttranslational modifications, such as phosphorylation sites.

Historically, cleaving a protein into a set of smaller peptides was an essential step in determining its amino acid sequence. This was ultimately accomplished through a series of repeated chemical reactions that removed one amino acid at a time from each peptide’s N-terminus. After each cycle, the identity of the excised amino acid was determined by chromatographic methods. Now that the complete genome sequences for many organisms are available, mass spectrometry has become the method of choice for identifying proteins and matching each to its corresponding gene, thereby also determining its amino acid sequence as we discuss next.

Mass Spectrometry Can Be Used to Sequence Peptide Fragments and Identify Proteins

Mass spectrometry allows one to determine the precise mass of intact proteins and of peptides derived from them by enzymatic or chemical cleavage. This information can then be used to search genomic databases, in which the masses of all proteins and of all their predicted peptide fragments have been tabulated (Figure 8–20A). An unambiguous match to a particular open reading frame can often be made knowing the mass of only a few peptides derived from a given protein. Mass spectrometric methods are therefore critically important for the field of proteomics, the large-scale effort to identify and characterize all of the proteins encoded in an organism’s genome, including their posttranslational modifications.

Mass spectrometry is an enormously sensitive technique that requires very little material. Masses can be obtained with great accuracy, often with an error of less than one part in a million. The most commonly used mass spectrometric method is called matrix-assisted laser desorption ionization–time-of-flight spectrometry (MALDI-TOF). In this method, peptides are mixed with an organic acid and then dried onto a metal or ceramic slide. The sample is then blasted with a laser, causing the peptides to become ejected from the slide in the form of an ionized gas in which each molecule carries one or more positive charges. The ionized peptides are then accelerated in an electric field and fly toward a detector. The time it takes them to reach the detector is determined by their mass and their charge: large peptides move more slowly, and more highly charged molecules move more quickly. The precise mass is readily determined by analysis of those peptides with a single charge. MALDI–TOF can even be used

TABLE 8–6 Some Reagents Commonly Used to Cleave Peptide Bonds in Proteins

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>AMINO ACID 1</th>
<th>AMINO ACID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin</td>
<td>Lys or Arg</td>
<td>any</td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>Phe, Trp, or Tyr</td>
<td>any</td>
</tr>
<tr>
<td>V8 protease</td>
<td>Glu</td>
<td>any</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanogen bromide</td>
<td>Met</td>
<td>any</td>
</tr>
<tr>
<td>2-Nitro-5-thiocyanobenzoate</td>
<td>any</td>
<td>Cys</td>
</tr>
</tbody>
</table>

The specificity for the amino acids on either side of the cleaved bond is indicated; amino acid 2 is linked to the C-terminus of amino acid 1.
to measure the mass of intact proteins as large as 200,000 daltons, which corresponds to a polypeptide about 2000 amino acids in length.

Mass spectrometry is also used to determine the sequence of amino acids of individual peptide fragments. This method is particularly useful when the genome for the organism of interest has not yet been fully sequenced; the partial amino acid sequence obtained in this way can then be used to identify and clone the gene. Peptide sequencing is also important if proteins contain modifications, such as attached carbohydrates, phosphates, or methyl groups. In this case, the precise amino acids that are the sites of modifications can be determined.

To obtain such peptide sequence information, two mass spectrometers are required in tandem. The first separates peptides obtained after digestion of the protein of interest and allows one to zoom in on one peptide at a time. This peptide is then further fragmented by collision with high-energy gas atoms. This method of fragmentation preferentially cleaves the peptide bonds, generating a ladder of fragments, each differing by a single amino acid. The second mass

Figure 8–20 Mass-spectrometric approaches to identify proteins and sequence peptides. (A) Mass spectrometry can be used to identify proteins by determining their precise masses, and the masses of peptides derived from them, and using that information to search a genomic database for the corresponding gene. In this example, the protein of interest is excised from a two-dimensional polyacrylamide gel and then digested with trypsin. The peptide fragments are loaded into the mass spectrometer and their masses are measured. Sequence databases are then searched to find the gene that encodes a protein whose calculated tryptic digest profile matches these values. (B) Mass spectrometry can also be used to determine directly the amino acid sequence of peptide fragments. In this example, proteins that form a macromolecular complex have been separated by chromatography, and a single protein selected for digestion with trypsin. The masses of these tryptic fragments are then determined by mass spectrometry as in (A). To determine their exact amino acid sequence, each peptide is further fragmented, primarily by cleaving its peptide bonds. This treatment generates a nested set of peptides, each differing in size by one amino acid. These fragments are fed into a second coupled mass spectrometer and their masses are determined. The difference in masses between two closely related peptides can be used to deduce the “missing” amino acid. By repeated applications of this procedure, a partial amino acid sequence of the original protein can be determined. (Micrograph courtesy of Patrick O’Farrell.)

spectrometer then separates these fragments and displays their masses. The amino acid sequence can be deduced from the differences in mass between the peptides (Figure 8–20B). Post-translational modifications are identified when the amino acid to which they are attached show a characteristically increased mass.

To learn more about the structure and function of a protein, one must obtain large amounts of the protein for analysis. This is most often accomplished by using the powerful recombinant DNA technologies discussed next.

Summary

Populations of cells can be analyzed biochemically by disrupting them and fractionating their contents by ultracentrifugation. Further fractionations allow functional cell-free systems to be developed; such systems are required to determine the molecular details of complex cellular processes. Protein synthesis, DNA replication, RNA splicing, the cell cycle, mitosis, and various types of intracellular transport can all be studied in this way. The molecular weight and subunit composition of even very small amounts of a protein can be determined by SDS polyacrylamide-gel electrophoresis. In two-dimensional gel electrophoresis, proteins are resolved as separate spots by isoelectric focusing in one dimension, followed by SDS polyacrylamide-gel electrophoresis in a second dimension. These electrophoretic separations can be applied even to proteins that are normally insoluble in water.

The major proteins in soluble cell extracts can be purified by column chromatography; depending on the type of column matrix, biologically active proteins can be separated on the basis of their molecular weight, hydrophobicity, charge characteristics, or affinity for other molecules. In a typical purification the sample is passed through several different columns in turn—the enriched fractions obtained from one column are applied to the next. Once a protein has been purified to homogeneity, its biological activities can be examined in detail. Using mass spectrometry, the masses of proteins and peptides derived from them can be rapidly determined. With this information one can refer to genome databases to deduce the remaining amino acid sequence of the protein from the nucleotide sequence of its gene.

ISOLATING, CLONING, AND SEQUENCING DNA

Until the early 1970s DNA was the most difficult cellular molecule for the biochemist to analyze. Enormously long and chemically monotonous, the string of nucleotides that forms the genetic material of an organism could be examined only indirectly, by protein or RNA sequencing or by genetic analysis. Today the situation has changed entirely. From being the most difficult macromolecule of the cell to analyze, DNA has become the easiest. It is now possible to isolate a specific region of a genome, to produce a virtually unlimited number of copies of it, and to determine the sequence of its nucleotides overnight. At the height of the Human Genome Project, large facilities with automated machines were generating DNA sequences at the rate of 1000 nucleotides per second, around the clock. By related techniques, an isolated gene can be altered (engineered) at will and transferred back into the germ line of an animal or plant, so as to become a functional and heritable part of the organism's genome.

These technical breakthroughs in genetic engineering—the ability to manipulate DNA with precision in a test tube or an organism—have had a dramatic impact on all aspects of cell biology by facilitating the study of cells and their macromolecules in previously unimagined ways. They have led to the discovery of whole new classes of genes and proteins, while revealing that many proteins have been much more highly conserved in evolution than had been suspected. They have provided new tools for determining the functions of proteins and of individual domains within proteins, revealing a host of unexpected relationships between them. By making available large amounts of any protein, they have shown the way to efficient mass production of protein hormones and vaccines. Finally, by allowing the regulatory regions of genes to be dissected,
they provide biologists with an important tool for unraveling the complex regulatory networks by which eucaryotic gene expression is controlled.

Recombinant DNA technology comprises a mixture of techniques, some new and some borrowed from other fields such as microbial genetics (Table 8–7). Central to the technology are the following key techniques:

1. Cleavage of DNA at specific sites by restriction nucleases, which greatly facilitates the isolation and manipulation of individual genes.
2. DNA cloning either through the use of cloning vectors or the polymerase chain reaction, whereby a single DNA molecule can be copied to generate many billions of identical molecules.
3. Nucleic acid hybridization, which makes it possible to find a specific sequence of DNA or RNA with great accuracy and sensitivity on the basis of its ability to bind a complementary nucleic acid sequence.
4. Rapid sequencing of all the nucleotides in a purified DNA fragment, which makes it possible to identify genes and to deduce the amino acid sequence of the proteins they encode.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1869</td>
<td>Miescher first isolates DNA from white blood cells harvested from pus-soaked bandages obtained from a nearby hospital.</td>
</tr>
<tr>
<td>1944</td>
<td>Avery provides evidence that DNA, rather than protein, carries the genetic information during bacterial transformation.</td>
</tr>
<tr>
<td>1953</td>
<td>Watson and Crick propose the double-helix model for DNA structure based on x-ray results of Franklin and Wilkins.</td>
</tr>
<tr>
<td>1955</td>
<td>Kornberg discovers DNA polymerase, the enzyme now used to produce labeled DNA probes.</td>
</tr>
<tr>
<td>1961</td>
<td>Marmur and Doty discover DNA renaturation, establishing the specificity and feasibility of nucleic acid hybridization reactions.</td>
</tr>
<tr>
<td>1962</td>
<td>Arber provides the first evidence for the existence of DNA restriction nucleases, leading to their purification and use in DNA sequence characterization by Nathans and H. Smith.</td>
</tr>
<tr>
<td>1966</td>
<td>Nirenberg, Ochoa, and Khorana elucidate the genetic code.</td>
</tr>
<tr>
<td>1967</td>
<td>Gellert discovers DNA ligase, the enzyme used to join DNA fragments together.</td>
</tr>
<tr>
<td>1972–1973</td>
<td>DNA cloning techniques are developed by the laboratories of Boyer, Cohen, Berg, and their colleagues at Stanford University and the University of California at San Francisco.</td>
</tr>
<tr>
<td>1975</td>
<td>Southern develops gel-transfer hybridization for the detection of specific DNA sequences.</td>
</tr>
<tr>
<td>1975–1977</td>
<td>Sanger and Barrell and Maxam and Gilbert develop rapid DNA-sequencing methods.</td>
</tr>
<tr>
<td>1981–1982</td>
<td>Palmiter and Brinster produce transgenic mice; Spradling and Rubin produce transgenic fruit flies.</td>
</tr>
<tr>
<td>1982</td>
<td>GenBank, NIH’s public genetic sequence database, is established at Los Alamos National Laboratory.</td>
</tr>
<tr>
<td>1985</td>
<td>Mullis and co-workers invent the polymerase chain reaction (PCR).</td>
</tr>
<tr>
<td>1987</td>
<td>Capecchi and Smithies introduce methods for performing targeted gene replacement in mouse embryonic stem cells.</td>
</tr>
<tr>
<td>1989</td>
<td>Fields and Song develop the yeast two-hybrid system for identifying and studying protein interactions.</td>
</tr>
<tr>
<td>1989</td>
<td>Olson and colleagues describe sequence-tagged sites, unique stretches of DNA that are used to make physical maps of human chromosomes.</td>
</tr>
<tr>
<td>1990</td>
<td>Lipman and colleagues release BLAST, an algorithm used to search for homology between DNA and protein sequences.</td>
</tr>
<tr>
<td>1990</td>
<td>Simon and colleagues study how to efficiently use bacterial artificial chromosomes, BACs, to carry large pieces of cloned human DNA for sequencing.</td>
</tr>
<tr>
<td>1991</td>
<td>Hood and Hunkapillar introduce new automated DNA sequence technology.</td>
</tr>
<tr>
<td>1995</td>
<td>Venter and colleagues sequence the first complete genome, that of the bacterium Haemophilus influenzae.</td>
</tr>
<tr>
<td>1996</td>
<td>Goffeau and an international consortium of researchers announce the completion of the first genome sequence of a eucaryote, the yeast Saccharomyces cerevisiae.</td>
</tr>
<tr>
<td>1996–1997</td>
<td>Lockhart and colleagues and Brown and DeRisi produce DNA microarrays, which allow the simultaneous monitoring of thousands of genes.</td>
</tr>
<tr>
<td>1998</td>
<td>Sulston and Waterston and colleagues produce the first complete sequence of a multicellular organism, the nematode worm Caenorhabditis elegans.</td>
</tr>
<tr>
<td>2001</td>
<td>Consortia of researchers announce the completion of the draft human genome sequence.</td>
</tr>
</tbody>
</table>
5. Simultaneous monitoring of the expression level of each gene in a cell, using nucleic acid microarrays that allow tens of thousands of hybridization reactions to be performed simultaneously.

In this chapter we describe each of these basic techniques, which together have revolutionized the study of cell biology.

Large DNA Molecules Are Cut into Fragments by Restriction Nucleases

Unlike a protein, a gene does not exist as a discrete entity in cells, but rather as a small region of a much longer DNA molecule. Although the DNA molecules in a cell can be randomly broken into small pieces by mechanical force, a fragment containing a single gene in a mammalian genome would still be only one among a hundred thousand or more DNA fragments, indistinguishable in their average size. How could such a gene be purified? Because all DNA molecules consist of an approximately equal mixture of the same four nucleotides, they cannot be readily separated, as proteins can, on the basis of their different charges and binding properties. Moreover, even if a purification scheme could be devised, vast amounts of DNA would be needed to yield enough of any particular gene to be useful for further experiments.

The solution to all of these problems began to emerge with the discovery of restriction nucleases. These enzymes, which can be purified from bacteria, cut the DNA double helix at specific sites defined by the local nucleotide sequence, thereby cleaving a long double-stranded DNA molecule into fragments of strictly defined sizes. Different restriction nucleases have different sequence specificities, and it is relatively simple to find an enzyme that can create a DNA fragment that includes a particular gene. The size of the DNA fragment can then be used as a basis for partial purification of the gene from a mixture.

Different species of bacteria make different restriction nucleases, which protect them from viruses by degrading incoming viral DNA. Each nuclease recognizes a specific sequence of four to eight nucleotides in DNA. These sequences, where they occur in the genome of the bacterium itself, are protected from cleavage by methylation at an A or a C residue; the sequences in foreign DNA are generally not methylated and so are cleaved by the restriction nucleases. Large numbers of restriction nucleases have been purified from various species of bacteria; several hundred, most of which recognize different nucleotide sequences, are now available commercially.

Some restriction nucleases produce staggered cuts, which leave short single-stranded tails at the two ends of each fragment (Figure 8–21). Ends of this type are known as cohesive ends, as each tail can form complementary base-pairing between their cohesive ends, with the tail at any other end produced by the same enzyme (Figure 8–22). The

Figure 8–21 The DNA nucleotide sequences recognized by four widely used restriction nucleases. As in the examples shown, such sequences are often six base pairs long and “palindromic” (that is, the nucleotide sequence is the same if the helix is turned by 180 degrees around the center of the short region of helix that is recognized). The enzymes cut the two strands of DNA at or near the recognition sequence. For some enzymes, such as HpaI, HindIII, and PstI, the cleavage is staggered and creates cohesive ends. Restriction nucleases are obtained from various species of bacteria: HpaI is from Hemophilus parainfluenzae, EcoRI is from Escherichia coli, HindIII is from Hemophilus influenzae, and PstI is from Providencia stuartii.

Figure 8–22 Restriction nucleases produce DNA fragments that can be easily joined together. Fragments with the same cohesive ends can readily join by complementary base-pairing between their cohesive ends, as illustrated. The two DNA fragments that join in this example were both produced by the EcoRI restriction nuclease, whereas the three other fragments were produced by different restriction nucleases that generated different cohesive ends (see Figure 8–21). Blunt-ended fragments, like those generated by HpaI (see Figure 8–21), can be spliced together with more difficulty.
cohesive ends generated by restriction enzymes allow any two DNA fragments to be easily joined together, as long as the fragments were generated with the same restriction nuclease (or with another nuclease that produces the same cohesive ends). DNA molecules produced by splicing together two or more DNA fragments are called recombinant DNA molecules; they have made possible many new types of cell-biological studies.

Gel Electrophoresis Separates DNA Molecules of Different Sizes

The length and purity of DNA molecules can be accurately determined by the same types of gel electrophoresis methods that have proved so useful in the analysis of proteins. The procedure is actually simpler than for proteins: because each nucleotide in a nucleic acid molecule already carries a single negative charge, there is no need to add the negatively charged detergent SDS that is required to make protein molecules move uniformly toward the positive electrode. For DNA fragments less than 500 nucleotides long, specially designed polyacrylamide gels allow separation of molecules that differ in length by as little as a single nucleotide (Figure 8–23A). The pores in polyacrylamide gels, however, are too small to permit very large DNA molecules to pass; to separate these by size, the much more porous gels formed by dilute solutions of agarose (a polysaccharide isolated from seaweed) are used (Figure 8–23B). These DNA separation methods are widely used for both analytical and preparative purposes.

A variation of agarose gel electrophoresis, called pulsed-field gel electrophoresis, makes it possible to separate even extremely long DNA molecules. Ordinary gel electrophoresis fails to separate such molecules because the steady electric field stretches them out so that they travel end-first through the gel in snakelike configurations at a rate that is independent of their length. In pulsed-field gel electrophoresis, by contrast, the direction of the electric field is changed periodically, which forces the molecules to reorient before continuing to move snakelike through the gel. This reorientation takes much more time for larger molecules, so that longer molecules move more slowly than shorter ones. As a consequence, even entire bacterial or yeast chromosomes separate into discrete...
bands in pulsed-field gels and so can be sorted and identified on the basis of their size (Figure 8–23C). Although a typical mammalian chromosome of 10^8 base pairs is too large to be sorted even in this way, large segments of these chromosomes are readily separated and identified if the chromosomal DNA is first cut with a restriction nuclease selected to recognize sequences that occur only rarely (once every 10,000 or more nucleotide pairs).

The DNA bands on agarose or polyacrylamide gels are invisible unless the DNA is labeled or stained in some way. One sensitive method of staining DNA is to expose it to the dye ethidium bromide, which fluoresces under ultraviolet light when it is bound to DNA (see Figures 8–23B,C). An even more sensitive detection method incorporates a radioisotope into the DNA molecules before electrophoresis; 32P is often used as it can be incorporated into DNA phosphates and emits an energetic β particle that is easily detected by autoradiography (as in Figure 8–23A).

Purified DNA Molecules Can Be Specifically Labeled with Radioisotopes or Chemical Markers in vitro

Two procedures are widely used to label isolated DNA molecules. In the first method a DNA polymerase copies the DNA in the presence of nucleotides that are either radioactive (usually labeled with 32P) or chemically tagged (Figure 8–24A). In this way “DNA probes” containing many labeled nucleotides can be produced for nucleic acid hybridization reactions (discussed below). The second procedure uses the bacteriophage enzyme polynucleotide kinase to transfer a single 32P-labeled phosphate from ATP to the 5′ end of each DNA chain (Figure 8–24B). Because only one 32P atom is incorporated by the kinase into each DNA strand, the DNA molecules labeled in this way are often not radioactive enough to be used as DNA probes; because they are labeled at only one end, however, they have been invaluable for other applications including DNA footprinting, as we see shortly.

Today, radioactive labeling methods are being replaced by labeling with molecules that can be detected chemically or through fluorescence. To produce such nonradioactive DNA molecules, specially modified nucleotide precursors are used (Figure 8–24C). A DNA molecule made in this way is allowed to bind to its complementary DNA sequence by hybridization, as discussed in the next section, and is then detected with an antibody (or other ligand) that specifically recognizes its modified side chain (see Figure 8–28).

Nucleic Acid Hybridization Reactions Provide a Sensitive Way of Detecting Specific Nucleotide Sequences

When an aqueous solution of DNA is heated at 100°C or exposed to a very high pH (pH ≥ 13), the complementary base pairs that normally hold the two strands of the double helix together are disrupted and the double helix rapidly dissociates into two single strands. This process, called *DNA denaturation*, was for many years thought to be irreversible. In 1961, however, it was discovered that complementary single strands of DNA readily re-form double helices by a process called *hybridization* (also called *DNA renaturation*) if they are kept for a prolonged period at 65°C. Similar hybridization reactions can occur between any two single-stranded nucleic acid chains (DNA/DNA, RNA/RNA, or RNA/DNA), provided that they have complementary nucleotide sequences. These specific hybridization reactions are widely used to detect and characterize specific nucleotide sequences in both RNA and DNA molecules.

Single-stranded DNA molecules used to detect complementary sequences are known as *probes*; these molecules, which carry radioactive or chemical markers to facilitate their detection, can be anywhere from fifteen to thousands of nucleotides long. Hybridization reactions using DNA probes are so sensitive and selective that they can detect complementary sequences present at a concentration as low as one molecule per cell. It is thus possible to determine how many copies of any DNA sequence are present in a particular DNA sample. The
same technique can be used to search for related but nonidentical genes. To find a gene of interest in an organism whose genome has not yet been sequenced, for example, a portion of a known gene can be used as a probe (Figure 8–25). Alternatively, DNA probes can be used in hybridization reactions with RNA rather than DNA to find out whether a cell is expressing a given gene. In this case a DNA probe that contains part of the gene’s sequence is hybridized with RNA purified from the cell in question to see whether the RNA includes molecules matching the probe DNA and, if so, in what quantities. In somewhat more elaborate procedures the DNA probe is treated with specific nucleases after the hybridization is complete, to determine the exact regions of the DNA probe that have paired with cellular RNA molecules. One can thereby determine the start and stop sites for RNA transcription, as well as the precise boundaries of the intron and exon sequences in a gene (Figure 8–26).

Today, the positions of intron/exon boundaries are usually determined by sequencing the cDNA sequences that represent the mRNAs expressed in a cell. Comparing this expressed sequence with the sequence of the whole gene reveals where the introns lie. We review later how cDNAs are prepared from mRNAs.

Figure 8–24 Methods for labeling DNA molecules in vitro. (A) A purified DNA polymerase enzyme labels all the nucleotides in a DNA molecule and can thereby produce highly radioactive DNA probes. (B) Polynucleotide kinase labels only the 5′ ends of DNA strands; therefore, when labeling is followed by restriction nuclease cleavage, as shown, DNA molecules containing a single 5′-end-labeled strand can be readily obtained. (C) The method in (A) is also used to produce nonradioactive DNA molecules that carry a specific chemical marker that can be detected with an appropriate antibody. The modified nucleotide shown can be incorporated into DNA by DNA polymerase so as to allow the DNA molecule to serve as a probe that can be readily detected. The base on the nucleoside triphosphate shown is an analog of thymine in which the methyl group on T has been replaced by a spacer arm linked to the plant steroid digoxigenin. To visualize the probe, the digoxigenin is detected by a specific antibody coupled to a visible marker such as a fluorescent dye. Other chemical labels such as biotin can be attached to nucleotides and used in essentially the same way.
We have seen that genes are switched on and off as a cell encounters new signals in its environment. The hybridization of DNA probes to cellular RNAs allows one to determine whether or not a particular gene is being transcribed; moreover, when the expression of a gene changes, one can determine whether the change is due to transcriptional or posttranscriptional controls (see Figure 7–87). These tests of gene expression were initially performed with one DNA probe at a time. DNA microarrays now allow the simultaneous monitoring of gene expression.

Figure 8–25 Different hybridization conditions allow less than perfect DNA matching. When only an identical match with a DNA probe is desired, the hybridization reaction is kept just a few degrees below the temperature at which a perfect DNA helix denatures in the solvent used (its *melting temperature*), so that all imperfect helices formed are unstable. When a DNA probe is being used to find DNAs that are related, but not identical, in sequence, hybridization is performed at a lower temperature. This allows even imperfectly paired double helices to form. Only the lower-temperature hybridization conditions can be used to search for genes (C and E in this example) that are nonidentical but related to gene A (see Figure 10–18).

Figure 8–26 The use of nucleic acid hybridization to determine the region of a cloned DNA fragment that is present in an mRNA molecule. The method shown requires a nuclease that cuts the DNA chain only where it is not base-paired to a complementary RNA chain. The positions of the introns in eucaryotic genes are mapped by the method shown; the beginning and the end of an RNA molecule can be determined in the same way. For this type of analysis the DNA is electrophoresed through a denaturing agarose gel, which causes it to migrate as single-stranded molecules.
hundreds or thousands of genes at a time, as we discuss later. Hybridization methods are in such wide use in cell biology today that it is difficult to imagine how we could study gene structure and expression without them.

Northern and Southern Blotting Facilitate Hybridization with Electrophoretically Separated Nucleic Acid Molecules

DNA probes are often used to detect, in a complex mixture of nucleic acids, only those molecules with sequences that are complementary to all or part of the probe. Gel electrophoresis can be used to fractionate the many different RNA or DNA molecules in a crude mixture according to their size before the hybridization reaction is performed; if molecules of only one or a few sizes become labeled with the probe, one can be certain that the hybridization was indeed specific. Moreover, the size information obtained can be invaluable in itself. An example illustrates this point.

Suppose that one wishes to determine the nature of the defect in a mutant mouse that produces abnormally low amounts of albumin, a protein that liver cells normally secrete into the blood in large amounts. First, one collects identical samples of liver tissue from mutant and normal mice (the latter serving as controls) and disrupts the cells in a strong detergent to inactivate cellular nucleases that might otherwise degrade the nucleic acids. Next, one separates the RNA and DNA from all of the other cell components: the proteins present are completely denatured and removed by repeated extractions with phenol—a potent organic solvent that is partly miscible with water; the nucleic acids, which remain in the aqueous phase, are then precipitated with alcohol to separate them from the small molecules of the cell. Then one separates the DNA from the RNA by their different solubilities in alcohols and degrades any contaminating nucleic acid of the unwanted type by treatment with a highly specific enzyme—either an RNase or a DNase. The mRNAs are typically separated from bulk RNA by retention on a chromatography column that specifically binds the poly-A tails of mRNAs.

To analyze the albumin-encoding mRNAs with a DNA probe, a technique called **Northern blotting** is used. First, the intact mRNA molecules purified from mutant and control liver cells are fractionated on the basis of their sizes into a series of bands by gel electrophoresis. Then, to make the RNA molecules accessible to DNA probes, a replica of the pattern of RNA bands on the gel is made by transferring (“blotting”) the fractionated RNA molecules onto a sheet of nitrocellulose or nylon paper. The paper is then incubated in a solution containing a labeled DNA probe whose sequence corresponds to part of the template strand that produces albumin mRNA. The RNA molecules that hybridize to the labeled DNA probe on the paper (because they are complementary to part of the normal albumin gene sequence) are then located by detecting the bound probe by autoradiography or by chemical means (Figure 8–27). The size of the RNA molecules in each band that binds the probe can be determined by reference to bands of RNA molecules of known sizes (RNA standards) that are electrophoresed side by side with the experimental sample. In this way one might discover that liver cells from the mutant mice make albumin RNA in normal amounts and of normal size; alternatively, albumin RNA of normal size might be detected in greatly reduced amounts. Another possibility is that the mutant albumin RNA molecules might be abnormally short and therefore move unusually quickly through the gel; in this case the gel blot could be retested with a series of shorter DNA probes, each corresponding to small portions of the gene, to reveal which part of the normal RNA is missing.

An analogous gel-transfer hybridization method, called **Southern blotting**, analyzes DNA rather than RNA. Isolated DNA is first cut into readily separable fragments with restriction nucleases. The double-stranded fragments are then separated on the basis of size by gel electrophoresis, and those complementary to a DNA probe are identified by blotting and hybridization, as just described for RNA (see Figure 8–27). To characterize the structure of the albumin gene in the mutant mice, an albumin-specific DNA probe would be used to construct a
NUCLEIC ACIDS SEPARATED ACCORDING TO SIZE BY AGAROSE GEL ELECTROPHORESIS

SEPARATED NUCLEIC ACIDS BLOTTED ONTO NITROCELLULOSE PAPER BY SUCTION OF BUFFER THROUGH GEL AND PAPER

LABELED PROBE HYBRIDIZED TO SEPARATED DNA

Figure 8–27 Detection of specific RNA or DNA molecules by gel-transfer hybridization. In this example, the DNA probe is detected by its radioactivity. DNA probes detected by chemical or fluorescence methods are also widely used (see Figure 8–24). (A) A mixture of either single-stranded RNA molecules (Northern blotting) or the double-stranded DNA molecules created by restriction nuclease treatment (Southern blotting) is separated according to length by electrophoresis. (B) A sheet of either nitrocellulose paper or nylon paper is laid over the gel, and the separated RNA or DNA fragments are transferred to the sheet by blotting. (C) The nitrocellulose sheet is carefully peeled off the gel. (D) The sheet containing the bound nucleic acids is placed in a sealed plastic bag together with a buffered salt solution containing a radioactively labeled DNA probe. The paper sheet is exposed to a labeled DNA probe for a prolonged period under conditions favoring hybridization. (E) The sheet is removed from the bag and washed thoroughly, so that only probe molecules that have hybridized to the RNA or DNA immobilized on the paper remain attached. After autoradiography, the DNA that has hybridized to the labeled probe shows up as bands on the autoradiograph. For Southern blotting, the strands of the double-stranded DNA molecules on the paper must be separated before the hybridization process; this is done by exposing the DNA to alkaline denaturing conditions after the gel has been run (not shown).

detailed restriction map of the genome in the region of the albumin gene. From this map one could determine if the albumin gene has been rearranged in the defective animals—for example, by the deletion or the insertion of a short DNA sequence; most single base changes, however, could not be detected in this way.

Hybridization Techniques Locate Specific Nucleic Acid Sequences in Cells or on Chromosomes

Nucleic acids, no less than other macromolecules, occupy precise positions in cells and tissues, and a great deal of potential information is lost when these molecules are extracted by homogenization. For this reason, techniques have been developed in which nucleic acid probes are used in much the same way as labeled antibodies to locate specific nucleic acid sequences in situ, a procedure called in situ hybridization. This procedure can now be done both for DNA in chromosomes and for RNA in cells. Labeled nucleic acid probes can be hybridized to chromosomes that have been exposed briefly to a very high pH to disrupt their DNA base pairs. The chromosomal regions that bind the probe during the hybridization step are then visualized. Originally, this technique was developed with highly radioactive DNA probes, which were detected by autoradiography. The spatial resolution of the technique, however, can be greatly improved by labeling the DNA probes chemically (Figure 8–28) instead of radioactively, as described earlier.

In situ hybridization methods have also been developed that reveal the distribution of specific RNA molecules in cells in tissues. In this case the tissues are
not exposed to a high pH, so the chromosomal DNA remains double-stranded and cannot bind the probe. Instead the tissue is gently fixed so that its RNA is retained in an exposed form that can hybridize when the tissue is incubated with a complementary DNA or RNA probe. In this way the patterns of differential gene expression can be observed in tissues, and the location of specific RNAs can be determined in cells (Figure 8–29). In the Drosophila embryo, for example, such patterns have provided new insights into the mechanisms that create distinctions between cells in different positions during development (described in Chapter 21).

Genes Can Be Cloned from a DNA Library

Any DNA fragment that contains a gene of interest can be cloned. In cell biology, the term DNA cloning is used in two senses. In one sense it literally refers to the act of making many identical copies of a DNA molecule—the amplification of a particular DNA sequence. However, the term is also used to describe the isolation of a particular stretch of DNA (often a particular gene) from the rest of a cell’s DNA, because this isolation is greatly facilitated by making many identical copies of the DNA of interest.

DNA cloning in its most general sense can be accomplished in several ways. The simplest involves inserting a particular fragment of DNA into the purified DNA genome of a self-replicating genetic element—generally a virus or a plasmid. A DNA fragment containing a human gene, for example, can be joined in a test tube to the chromosome of a bacterial virus, and the new recombinant DNA molecule can then be introduced into a bacterial cell. Starting with only one such recombinant DNA molecule that infects a single cell, the normal replication mechanisms of the virus can produce more than 10^{12} identical virus DNA molecules in less than a day, thereby amplifying the amount of the inserted human DNA fragment by the same factor. A virus or plasmid used in this way is known as a cloning vector, and the DNA propagated by insertion into it is said to have been cloned.

To isolate a specific gene, one often begins by constructing a DNA library—a comprehensive collection of cloned DNA fragments from a cell, tissue, or organism. This library includes (one hopes) at least one fragment that contains the gene of interest. Libraries can be constructed with either a virus or a plasmid vector and are generally housed in a population of bacterial cells. The principles underlying the methods used for cloning genes are the same for either type of cloning vector, although the details may differ. Today most cloning is performed with plasmid vectors.

The plasmid vectors most widely used for gene cloning are small circular molecules of double-stranded DNA derived from larger plasmids that occur naturally in bacterial cells. They generally account for only a minor fraction of the total host bacterial cell DNA, but they can easily be separated owing to their

Figure 8–28 In situ hybridization to locate specific genes on chromosomes. Here, six different DNA probes have been used to mark the location of their respective nucleotide sequences on human chromosome 5 at metaphase. The probes have been chemically labeled and detected with fluorescent antibodies. Both copies of chromosome 5 are shown, aligned side by side. Each probe produces two dots on each chromosome, since a metaphase chromosome has replicated its DNA and therefore contains two identical DNA helices. (Courtesy of David C. Ward.)

Figure 8–29 In situ hybridization for RNA localization. (A) Expression pattern of deltaC in the early zebrafish embryo. This gene codes for a ligand in the Notch signaling pathway (discussed in Chapter 15), and the pattern shown here reflects its role in the development of somites—the future segments of the vertebrate trunk and tail. (B) High-resolution RNA in situ localization reveals the sites within the nucleolus of a pea cell where ribosomal RNA is synthesized. The sausage-like structures, 0.5–1 μm in diameter, correspond to the loops of chromosomal DNA that contain the genes encoding rRNA. Each small, white spot represents transcription of a single rRNA gene. (A, courtesy of Yun-Jin Jiang; B, courtesy of Peter Shaw.)
small size from chromosomal DNA molecules, which are large and precipitate as a pellet upon centrifugation. For use as cloning vectors, the purified plasmid DNA circles are first cut with a restriction nuclease to create linear DNA molecules. The cellular DNA to be used in constructing the library is cut with the same restriction nuclease, and the resulting restriction fragments (including those containing the gene to be cloned) are then added to the cut plasmids and annealed via their cohesive ends to form recombinant DNA circles. These recombinant molecules containing foreign DNA inserts are then covalently sealed with the enzyme DNA ligase (Figure 8–30).

In the next step in preparing the library, the recombinant DNA circles are introduced into bacterial cells that have been made transiently permeable to DNA; such cells are said to be transfected with the plasmids. As these cells grow and divide, doubling in number every 30 minutes, the recombinant plasmids also replicate to produce an enormous number of copies of DNA circles containing the foreign DNA (Figure 8–31). Many bacterial plasmids carry genes for antibiotic resistance, a property that can be exploited to select those cells that have been successfully transfected; if the bacteria are grown in the presence of the antibiotic, only cells containing plasmids will survive. Each original bacterial cell that was initially transfected contains, in general, a different foreign DNA insert; this insert is inherited by all of the progeny cells of that bacterium, which together form a small colony in a culture dish.

For many years, plasmids were used to clone fragments of DNA of 1,000 to 30,000 nucleotide pairs. Larger DNA fragments are more difficult to handle and were harder to clone. Then researchers began to use yeast artificial chromosomes (YACs), which could handle very large pieces of DNA (Figure 8–32). Today, new plasmid vectors based on the naturally occurring F plasmid of *E. coli* are used to clone DNA fragments of 300,000 to 1 million nucleotide pairs. Unlike
smaller bacterial plasmids, the F plasmid—and its derivative, the bacterial artificial chromosome (BAC)—is present in only one or two copies per E. coli cell. The fact that BACs are kept in such low numbers in bacterial cells may contribute to their ability to maintain large cloned DNA sequences stably: with only a few BACs present, it is less likely that the cloned DNA fragments will become scrambled due to recombination with sequences carried on other copies of the plasmid. Because of their stability, ability to accept large DNA inserts, and ease of handling, BACs are now the preferred vector for building DNA libraries of complex organisms—including those representing the human and mouse genomes.

Two Types of DNA Libraries Serve Different Purposes

Cleaving the entire genome of a cell with a specific restriction nuclease and cloning each fragment as just described is sometimes called the “shotgun” approach to gene cloning. This technique can produce a very large number of DNA fragments—on the order of a million for a mammalian genome—which will generate millions of different colonies of transfected bacterial cells. (When working with BACs rather than typical plasmids, larger fragments can be inserted, so fewer transfected bacterial cells are required to cover the genome.) Each of these colonies is composed of a clone of cells derived from a single ancestor cell, and therefore harbors many copies of a particular stretch of the fragmented genome (Figure 8–33). Such a plasmid is said to contain a genomic DNA clone, and the entire collection of plasmids is called a genomic DNA library. But because the genomic DNA is cut into fragments at random, only some fragments contain genes. Many of the genomic DNA clones obtained from the DNA of a higher eukaryotic cell contain only noncoding DNA, which, as we discussed in Chapter 4, makes up most of the DNA in such genomes.
An alternative strategy is to begin the cloning process by selecting only those DNA sequences that are transcribed into mRNA and thus are presumed to correspond to protein-encoding genes. This is done by extracting the mRNA (or a purified subfraction of the mRNA) from cells and then making a complementary DNA (cDNA) copy of each mRNA molecule present; this reaction is catalyzed by the reverse transcriptase enzyme of retroviruses, which synthesizes a DNA chain on an RNA template. The single-stranded DNA molecules synthesized by the reverse transcriptase are converted into double-stranded DNA molecules by DNA polymerase, and these molecules are inserted into a plasmid or virus vector and cloned (Figure 8–34). Each clone obtained in this way is called a cDNA clone, and the entire collection of clones derived from one mRNA preparation constitutes a cDNA library.

There are important differences between genomic DNA clones and cDNA clones, as illustrated in Figure 8–35. Genomic clones represent a random sample of all the DNA sequences in an organism and, with very rare exceptions, are the same regardless of the cell type used to prepare them. By contrast, cDNA clones contain only those regions of the genome that have been transcribed into mRNA. Because the cells of different tissues produce distinct sets of mRNA molecules, a distinct cDNA library is obtained for each type of cell used to prepare the library.

cDNA Clones Contain Uninterrupted Coding Sequences

The use of a cDNA library for gene cloning has several advantages. First, some proteins are produced in very large quantities by specialized cells. In this case, the mRNA encoding the protein is likely to be produced in such large quantities that a cDNA library prepared from the cells is highly enriched for the cDNA molecules encoding the protein, greatly reducing the problem of identifying the desired clone in the library (see Figure 8–35). Hemoglobin, for example, is made...
in large amounts by developing erythrocytes (red blood cells); for this reason the globin genes were among the first to be cloned.

By far the most important advantage of cDNA clones is that they contain the uninterrupted coding sequence of a gene. As we have seen, eucaryotic genes usually consist of short coding sequences of DNA (exons) separated by much longer noncoding sequences (introns); the production of mRNA entails the removal of the noncoding sequences from the initial RNA transcript and the splicing together of the coding sequences. Neither bacterial nor yeast cells will make these modifications to the RNA produced from a gene of a higher eucaryotic cell. Thus, when the aim of the cloning is either to deduce the amino acid sequence of the protein from the DNA sequence or to produce the protein in bulk by expressing the cloned gene in a bacterial or yeast cell, it is much preferable to start with cDNA.

Genomic and cDNA libraries are inexhaustible resources that are widely shared among investigators. Today, many such libraries are also available from commercial sources.

Isolated DNA Fragments Can Be Rapidly Sequenced

In the late 1970s methods were developed that allowed the nucleotide sequence of any purified DNA fragment to be determined simply and quickly. They have made it possible to determine the complete DNA sequences of tens of thousands of genes, and many organisms have had their DNA genomes fully sequenced (see Table 1–1, p. 20). The volume of DNA sequence information is now so large (many tens of billions of nucleotides) that powerful computers must be used to store and analyze it.

Large volume DNA sequencing was made possible through the development in the mid-1970s of the dideoxy method for sequencing DNA, which is based on *in vitro* DNA synthesis performed in the presence of chain-terminating dideoxyribonucleoside triphosphates (Figure 8–36).

Although the same basic method is still used today, many improvements have been made. DNA sequencing is now completely automated: robotic devices mix the reagents and then load, run, and read the order of the nucleotide sequence...
bases from the gel. This is facilitated by using chain-terminating nucleotides that are each labeled with a different colored fluorescent dye; in this case, all four synthesis reactions can be performed in the same tube, and the products can be separated in a single lane of a gel. A detector positioned near the bottom of the gel and working across all lanes, the DNA fragments are separated by electrophoresis in four parallel lanes (A). Each reaction produces a set of DNA sequences that contain different lengths complementary to the template DNA that is being sequenced and terminating at each of the different A’s. The exact lengths of the DNA synthesis products can then be used to determine the position of each A in the growing strand. (C) To determine the complete sequence of a DNA fragment, the double-stranded DNA is first separated into its single strands and one of the strands is used as the template for sequencing. Four different chain-terminating deoxyribonucleoside triphosphates (ddATP, ddCTP, ddGTP, ddTTP, again shown in red) are used in four separate DNA synthesis reactions on copies of the same single-stranded DNA template (gray). Each reaction produces a set of DNA copies that terminate at different points in the sequence. The products of these four reactions are separated by electrophoresis in four parallel lanes of a polyacrylamide gel (labeled here A, T, C, and G). The newly synthesized fragments are detected by a label (either radioactive or fluorescent) that has been incorporated either into the primer or into one of the deoxyribonucleoside triphosphates used to extend the DNA chain. In each lane, the bands represent fragments that have terminated at a given nucleotide (e.g., A in the leftmost lane) but at different positions in the DNA. By reading off the bands in order, starting at the bottom of the gel and working across all lanes, the DNA sequence of the newly synthesized strand can be determined. The sequence is given in the green arrow to the right of the gel. This sequence is identical to that of the 5’→3’ strand (green) of the original double-stranded DNA molecule.

Figure 8–36 The enzymatic—or dideoxy—method of sequencing DNA. (A) This method relies on the use of dideoxyribonucleoside triphosphates, derivatives of the normal deoxyribonucleoside triphosphates that lack the 3′ hydroxyl group. (B) Purified DNA is synthesized in vitro in a mixture that contains single-stranded molecules of the DNA to be sequenced (gray), the enzyme DNA polymerase, a short primer DNA (orange) to enable the polymerase to start DNA synthesis, and the four dideoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP: green A, C, G, and T). If a dideoxyribonucleotide analog (red) of one of these nucleotides is also present in the mixture, it can become incorporated into a growing DNA chain. Because this chain now lacks a 3′ OH group, the addition of the next nucleotide is blocked, and the DNA chain terminates at that point. In the example illustrated, a small amount of dideoxyATP (ddATP, symbolized here as a red A) has been included in the mixture. It competes with an excess of the normal deoxyATP (dATP, green A), so that ddATP is occasionally incorporated, at random, into a growing DNA strand. This reaction mixture will eventually produce a set of DNAs of different lengths complementary to the template DNA that is being sequenced and terminating at each of the different A’s. The exact lengths of the DNA synthesis products can then be used to determine the position of each A in the growing chain. (C) To determine the complete sequence of a DNA fragment, the double-stranded DNA is first separated into its single strands and one of the strands is used as the template for sequencing. Four different chain-terminating deoxyribonucleoside triphosphates (ddATP, ddCTP, ddGTP, ddTTP, again shown in red) are used in four separate DNA synthesis reactions on copies of the same single-stranded DNA template (gray). Each reaction produces a set of DNA copies that terminate at different points in the sequence. The products of these four reactions are separated by electrophoresis in four parallel lanes of a polyacrylamide gel (labeled here A, T, C, and G). The newly synthesized fragments are detected by a label (either radioactive or fluorescent) that has been incorporated either into the primer or into one of the deoxyribonucleoside triphosphates used to extend the DNA chain. In each lane, the bands represent fragments that have terminated at a given nucleotide (e.g., A in the leftmost lane) but at different positions in the DNA. By reading off the bands in order, starting at the bottom of the gel and working across all lanes, the DNA sequence of the newly synthesized strand can be determined. The sequence is given in the green arrow to the right of the gel. This sequence is identical to that of the 5’→3’ strand (green) of the original double-stranded DNA molecule.
gel reads and records the color of the fluorescent label on each band as it passes through a laser beam (Figure 8–37). A computer then reads and stores this nucleotide sequence.

Nucleotide Sequences Are Used to Predict the Amino Acid Sequences of Proteins

Now that DNA sequencing is so rapid and reliable, it has become the preferred method for determining, indirectly, the amino acid sequences of most proteins. Given a nucleotide sequence that encodes a protein, the procedure is quite straightforward. Although in principle there are six different reading frames in which a DNA sequence can be translated into protein (three on each strand), the correct one is generally recognizable as the only one lacking frequent stop codons (Figure 8–38). As we saw when we discussed the genetic code in Chapter 6, a random sequence of nucleotides, read in frame, will encode a stop signal for protein synthesis about once every 20 amino acids. Those nucleotide sequences that encode a stretch of amino acids much longer than this are candidates for presumptive exons, and they can be translated (by computer) into amino acid sequences and checked against databases for similarities to known proteins from other organisms. If necessary, a limited amount of amino acid sequence can then be determined from the purified protein to confirm the sequence predicted from the DNA.
The problem comes, however, in determining which nucleotide sequences—within a whole genome sequence—represent genes that encode proteins. Identifying genes is easiest when the DNA sequence is from a bacterial or archaean chromosome, which lacks introns, or from a cDNA clone. The location of genes in these nucleotide sequences can be predicted by examining the DNA for certain distinctive features (discussed in Chapter 6). Briefly these genes that encode proteins are identified by searching the nucleotide sequence for open reading frames (ORFs) that begin with an initiation codon, usually ATG, and end with a termination codon, TAA, TAG, or TGA. To minimize errors, computers used to search for ORFs are often directed to count as genes only those sequences that are longer than, say, 100 codons in length.

For more complex genomes, such as those of eucaryotes, the process is complicated by the presence of large introns embedded within the coding portion of genes. In many multicellular organisms, including humans, the average exon is only 150 nucleotides long. Thus in eucaryotes, one must also search for other features that signal the presence of a gene, for example, sequences that signal an intron/exon boundary or distinctive upstream regulatory regions.

A second major approach to identifying the coding regions in chromosomes is through the characterization of the nucleotide sequences of the detectable mRNAs (in the form of cDNAs). The mRNAs (and the cDNAs produced from them) lack introns, regulatory DNA sequences, and the nonessential “spacer” DNA that lies between genes. It is therefore useful to sequence large numbers of cDNAs to produce a very large collection (called a database) of the coding sequences of an organism. These sequences are then readily used to distinguish the exons from the introns in the long chromosomal DNA sequences that correspond to genes.

Finally, nucleotide sequences that are conserved between closely related organisms usually encode proteins. Comparison of these conserved sequences in different species can also provide insight into the function of a particular protein or gene, as we see later in the chapter.

The Genomes of Many Organisms Have Been Fully Sequenced

Owing in large part to the automation of DNA sequencing, the genomes of many organisms have been fully sequenced; these include plant chloroplasts and animal mitochondria, large numbers of bacteria and archaea, and many of the model organisms that are studied routinely in the laboratory, including several yeasts, a nematode worm, the fruit fly *Drosophila*, the model plant *Arabidopsis*, the mouse, and, last but not least, humans. Researchers have also deduced the complete DNA sequences for a wide variety of human pathogens. These include the bacteria that cause cholera, tuberculosis, syphilis, gonorrhea, Lyme disease, and stomach ulcers, as well as hundreds of viruses—including smallpox virus and Epstein–Barr virus (which causes infectious mononucleosis). Examination of the genomes of these pathogens should provide clues about what makes them virulent, and will also point the way to new and more effective treatments.

Haemophilus influenzae (a bacterium that can cause ear infections or meningitis in children) was the first organism to have its complete genome sequence—all 1.8 million nucleotides—determined by the shotgun sequencing method, the most common strategy used today. In the shotgun method, long sequences of DNA are broken apart randomly into many shorter fragments. Each fragment is then sequenced and a computer is used to order these pieces into a whole chromosome or genome, using sequence overlap to guide the assembly. The shotgun method is the technique of choice for sequencing small genomes. Although larger, more repetitive genome sequences are more tricky to assemble, the shotgun method has been useful for sequencing the genomes of *Drosophila melanogaster*, mouse, and human.

With new sequences appearing at a steadily accelerating pace in the scientific literature, comparison of the complete genome sequences of different organisms allows us to trace the evolutionary relationships among genes and
organisms, and to discover genes and predict their functions. Assigning functions to genes often involves comparing their sequences with related sequences from model organisms that have been well characterized in the laboratory, such as the bacterium *E. coli*, the yeasts *S. cerevisiae* and *S. pombe*, the nematode worm *C. elegans*, and the fruit fly *Drosophila* (discussed in Chapter 1).

Although the organisms whose genomes have been sequenced share many cellular pathways and possess many proteins that are homologous in their amino acid sequences or structure, the functions of a very large number of newly identified proteins remain unknown. Some 15–40% of the proteins encoded by these sequenced genomes do not resemble any other protein that has been characterized functionally. This observation underscores one of the limitations of the emerging field of genomics: although comparative analysis of genomes reveals a great deal of information about the relationships between genes and organisms, it often does not provide immediate information about how these genes function, or what roles they have in the physiology of an organism. Comparison of the full gene complement of several thermophilic bacteria, for example, does not reveal why these bacteria thrive at temperatures exceeding 70°C. And examination of the genome of the incredibly radioresistant bacterium *Deinococcus radiodurans* does not explain how this organism can survive a blast of radiation that can shatter glass. Further biochemical and genetic studies, like those described in the final sections of this chapter, are required to determine how genes function in the context of living organisms.

Selected DNA Segments Can Be Cloned in a Test Tube by a Polymerase Chain Reaction

Now that so many genome sequences are available, genes can be cloned directly without the need to construct DNA libraries first. A technique called the polymerase chain reaction (PCR) makes this rapid cloning possible. PCR allows the DNA from a selected region of a genome to be amplified a billionfold, effectively “purifying” this DNA away from the remainder of the genome.

Two sets of DNA oligonucleotides, chosen to flank the desired nucleotide sequence of the gene, are synthesized by chemical methods. These oligonucleotides are then used to prime DNA synthesis on single strands generated by heating the DNA from the entire genome. The newly synthesized DNA is produced in a reaction catalyzed *in vitro* by a purified DNA polymerase, and the primers remain at the 5’ ends of the final DNA fragments that are made (Figure 8–39A).

Nothing special is produced in the first cycle of DNA synthesis; the power of the PCR method is revealed only after repeated rounds of DNA synthesis. Every cycle doubles the amount of DNA synthesized in the previous cycle. Because each cycle requires a brief heat treatment to separate the two strands of the template DNA double helix, the technique requires the use of a special DNA polymerase, isolated from a thermophilic bacterium, that is stable at much higher temperatures than normal, so that it is not denatured by the repeated heat treatments. With each round of DNA synthesis, the newly generated fragments serve as templates in their turn, and within a few cycles the predominant product is a single species of DNA fragment whose length corresponds to the distance between the two original primers (see Figure 8–39B).

In practice, 20–30 cycles of reaction are required for effective DNA amplification, with the products of each cycle serving as the DNA templates for the next—hence the term polymerase “chain reaction.” A single cycle requires only about 5 minutes, and the entire procedure can be easily automated. PCR thereby makes possible the “cell-free molecular cloning” of a DNA fragment in a few hours, compared with the several days required for standard cloning procedures. This technique is now used routinely to clone DNA from genes of interest directly—starting either from genomic DNA or from mRNA isolated from cells (Figure 8–40).

The PCR method is extremely sensitive; it can detect a single DNA molecule in a sample. Trace amounts of RNA can be analyzed in the same way by first
transcribing them into DNA with reverse transcriptase. The PCR cloning technique has largely replaced Southern blotting for the diagnosis of genetic diseases and for the detection of low levels of viral infection. It also has great promise in forensic medicine as a means of analyzing minute traces of blood or other tissues—even as little as a single cell—and identifying the person from whom they came by his or her genetic “fingerprint” (Figure 8–41).
Cellular Proteins Can Be Made in Large Amounts Through the Use of Expression Vectors

Fifteen years ago, the only proteins in a cell that could be studied easily were the relatively abundant ones. Starting with several hundred grams of cells, a major protein—one that constitutes 1% or more of the total cellular protein—can be purified by sequential chromatography steps to yield perhaps 0.1 g (100 mg) of pure protein. This amount was sufficient for conventional amino acid sequencing, for detailed analysis of biochemical activities, and for the production of antibodies, which could then be used to localize the protein in the cell. Moreover, if suitable crystals could be grown (often a difficult task), the three-dimensional structure of the protein could be determined by x-ray diffraction techniques, as we will discuss later. The structure and function of many abundant

Figure 8–40 Use of PCR to obtain a genomic or cDNA clone.

(A) To obtain a genomic clone by using PCR, chromosomal DNA is first purified from cells. PCR primers that flank the stretch of DNA to be cloned are added, and many cycles of the reaction are completed (see Figure 8–39). Since only the DNA between (and including) the primers is amplified, PCR provides a way to obtain a short stretch of chromosomal DNA selectively in a pure form. (B) To use PCR to obtain a cDNA clone of a gene, mRNA is first purified from cells. The first primer is then added to the population of mRNAs, and reverse transcriptase is used to make a complementary DNA strand. The second primer is then added, and the single-stranded DNA molecule is amplified through many cycles of PCR, as shown in Figure 8–39. For both types of cloning, the nucleotide sequence of at least part of the region to be cloned must be known beforehand.
Figure 8–41 How PCR is used in forensic science. (A) The DNA sequences that create the variability used in this analysis contain runs of short, repeated sequences, such as CACACA . . . , which are found in various positions (loci) in the human genome. The number of repeats in each run can be highly variable in the population, ranging from 4 to 40 in different individuals. A run of repeated nucleotides of this type is commonly referred to as a hypervariable microsatellite sequence—also known as a VNTR (variable number of tandem repeat) sequence. Because of the variability in these sequences at each locus, individuals usually inherit a different variant from their mother and from their father; two unrelated individuals therefore do not usually contain the same pair of sequences. A PCR analysis using primers that bracket the locus produces a pair of bands of amplified DNA from each individual, one band representing the maternal variant and the other representing the paternal variant. The length of the amplified DNA, and thus the position of the band it produces after electrophoresis, depends on the exact number of repeats at the locus. (B) In the schematic example shown here, the same three VNTR loci are analyzed (requiring three different pairs of specially selected oligonucleotide primers) from three suspects (individuals A, B, and C), producing six DNA bands for each person after polyacrylamide gel electrophoresis. Although some individuals have several bands in common, the overall pattern is quite distinctive for each. The band pattern can therefore serve as a “fingerprint” to identify an individual nearly uniquely. The fourth lane (F) contains the products of the same reactions carried out on a forensic sample. The starting material for such a PCR can be a single hair or a tiny sample of blood that was left at the crime scene. When examining the variability at 5 to 10 different VNTR loci, the odds that two random individuals would share the same genetic pattern by chance can be approximately one in 10 billion. In the case shown here, individuals A and C can be eliminated from further enquiries, whereas individual B remains a clear suspect for committing the crime. A similar approach is now routinely used for paternity testing.
proteins—including hemoglobin, trypsin, immunoglobulin, and lysozyme—were analyzed in this way.

The vast majority of the thousands of different proteins in a eucaryotic cell, however, including many with crucially important functions, are present in very small amounts. For most of them it is extremely difficult, if not impossible, to obtain more than a few micrograms of pure material. One of the most important contributions of DNA cloning and genetic engineering to cell biology is that they have made it possible to produce any of the cell’s proteins in nearly unlimited amounts.

Large amounts of a desired protein are produced in living cells by using expression vectors (Figure 8–42). These are generally plasmids that have been designed to produce a large amount of a stable mRNA that can be efficiently translated into protein in the transfected bacterial, yeast, insect, or mammalian cell. To prevent the high level of the foreign protein from interfering with the transfected cell’s growth, the expression vector is often designed so that the synthesis of the foreign mRNA and protein can be delayed until shortly before the cells are harvested (Figure 8–43).

Because the desired protein made from an expression vector is produced inside a cell, it must be purified away from the host cell proteins by chromatography following cell lysis; but because it is such a plentiful species in the cell lysate (often 1–10% of the total cell protein), the purification is usually easy to accomplish in only a few steps. Many expression vectors have been designed to add a molecular tag—a cluster of histidine residues or a small marker protein—to the expressed protein to make possible easy purification by affinity chromatography, as discussed previously (see pp. 483–484). A variety of expression vectors are available, each engineered to function in the type of cell in which the protein is to be made. In this way cells can be induced to make vast quantities of medically useful proteins—such as human insulin and growth hormone, interferon, and viral antigens for vaccines. More generally, these methods make it possible to produce every protein—even those that may be present in only a few copies per cell—in large enough amounts to be used in the kinds of detailed structural and functional studies that we discuss in the next section (Figure 8–44).

DNA technology can also be used to produce large amounts of any RNA molecule whose gene has been isolated. Studies of RNA splicing, protein synthesis, and RNA-based enzymes, for example, are greatly facilitated by the availability of pure RNA molecules. Most RNAs are present in only tiny quantities in cells, and they are very difficult to purify away from other cellular components—especially from the many thousands of other RNAs present in the cell. But any RNA of interest can be synthesized efficiently in vitro by transcription of its DNA sequence with a highly efficient viral RNA polymerase. The single species of RNA produced is then easily purified away from the DNA template and the RNA polymerase.
Summary

DNA cloning allows a copy of any specific part of a DNA or RNA sequence to be selected from the millions of other sequences in a cell and produced in unlimited amounts in pure form. DNA sequences can be amplified after cutting chromosomal DNA with a restriction nuclease and inserting the resulting DNA fragments into the chromosome of a self-replicating genetic element. Plasmid vectors are generally used and the resulting “genomic DNA library” is housed in millions of bacterial cells, each carrying a different cloned DNA fragment. Individual cells that are allowed to proliferate produce large amounts of a single cloned DNA fragment from this library. As an alternative, the polymerase chain reaction (PCR) allows DNA cloning to be performed directly with a purified, thermostable DNA polymerase—providing that the DNA sequence of interest is already known.

The procedures used to obtain DNA clones that correspond in sequence to mRNA molecules are the same except that a DNA copy of the mRNA sequence, called cDNA, is first made. Unlike genomic DNA clones, cDNA clones lack intron sequences, making them the clones of choice for analyzing the protein product of a gene.

Nucleic acid hybridization reactions provide a sensitive means of detecting a gene or any other nucleotide sequence of choice. Under stringent hybridization conditions (a combination of solvent and temperature where a perfect double helix is barely stable), two strands can pair to form a “hybrid” helix only if their nucleotide sequences are almost perfectly complementary. The enormous specificity of this hybridization reaction allows any single-stranded sequence of nucleotides to be labeled with a radioisotope or chemical and used as a probe to find a complementary partner strand, even in a cell or cell extract that contains millions of different DNA and RNA sequences. Probes of this type are widely used to detect the nucleic acids corresponding to specific genes, both to facilitate their purification and characterization and to localize them in cells, tissues, and organisms.

The nucleotide sequence of purified DNA fragments can be determined rapidly and simply by using highly automated techniques based on the dideoxy method for sequencing DNA. This technique has made it possible to determine the complete DNA sequences of tens of thousands of genes and to completely sequence the genomes of many organisms. Comparison of the genome sequences of different organisms allows us to trace the evolutionary relationships among genes and organisms, and it has proved valuable for discovering new genes and predicting their function.

Taken together, these techniques have made it possible to identify, isolate, and sequence genes from any organism of interest. Related technologies allow scientists to produce the protein products of these genes in the large quantities needed for detailed analyses of their structure and function, as well as for medical purposes.

ANALYZING PROTEIN STRUCTURE AND FUNCTION

Proteins perform most of the work of living cells. This versatile class of macromolecule is involved in virtually every cellular process: proteins replicate and transcribe DNA, and produce, process, and secrete other proteins. They control cell division, metabolism, and the flow of materials and information into and out of the cell. Understanding how cells work requires understanding how proteins function.
The question of what a protein does inside a living cell is not a simple one to answer. Imagine isolating an uncharacterized protein and discovering that its structure and amino acid sequence suggest that it acts as a protein kinase. Simply knowing that the protein can add a phosphate group to serine residues, for example, does not reveal how it functions in a living organism. Additional information is required to understand the context in which the biochemical activity is used. Where is this kinase located in the cell and what are its protein targets? In which tissues is it active? Which pathways does it influence? What role does it have in the growth or development of the organism?

In this section, we discuss the methods currently used to characterize protein structure and function. We begin with an examination of the techniques used to determine the three-dimensional structure of purified proteins. We then discuss methods that are used to predict how a protein functions, based on its homology to other known proteins and its location inside the cell. Finally, because most proteins act in concert with other proteins, we present techniques for detecting protein–protein interactions. But these approaches only begin to define how a protein might work inside a cell. In the last section of this chapter, we discuss how genetic approaches are used to dissect and analyze the biological processes in which a given protein functions.

The Diffraction of X-rays by Protein Crystals Can Reveal a Protein’s Exact Structure

Starting with the amino acid sequence of a protein, one can often predict which secondary structural elements, such as membrane-spanning α helices, will be present in the protein. It is presently not possible, however, to deduce reliably the three-dimensional folded structure of a protein from its amino acid sequence unless its amino acid sequence is very similar to that of a protein whose three-dimensional structure is already known. The main technique that has been used to discover the three-dimensional structure of molecules, including proteins, at atomic resolution is x-ray crystallography.

X-rays, like light, are a form of electromagnetic radiation, but they have a much shorter wavelength, typically around 0.1 nm (the diameter of a hydrogen atom). If a narrow parallel beam of x-rays is directed at a sample of a pure protein, most of the x-rays pass straight through it. A small fraction, however, is scattered by the atoms in the sample. If the sample is a well-ordered crystal, the scattered waves reinforce one another at certain points and appear as diffraction spots when the x-rays are recorded by a suitable detector (Figure 8–45).

The position and intensity of each spot in the x-ray diffraction pattern contain information about the locations of the atoms in the crystal that gave rise to it. Deducing the three-dimensional structure of a large molecule from the diffraction pattern of its crystal is a complex task and was not achieved for a protein molecule until 1960. But in recent years x-ray diffraction analysis has become increasingly automated, and now the slowest step is likely to be the generation of suitable protein crystals. This requires large amounts of very pure protein and often involves years of trial and error, searching for the proper crystallization conditions. There are still many proteins, especially membrane proteins, that have so far resisted all attempts to crystallize them.

Analysis of the resulting diffraction pattern produces a complex three-dimensional electron-density map. Interpreting this map—translating its contours into a three-dimensional structure—is a complicated procedure that requires knowledge of the amino acid sequence of the protein. Largely by trial and error, the sequence and the electron-density map are correlated by computer to give the best possible fit. The reliability of the final atomic model depends on the resolution of the original crystallographic data: 0.5 nm resolution might produce a low-resolution map of the polypeptide backbone, whereas a resolution of 0.15 nm allows all of the non-hydrogen atoms in the molecule to be reliably positioned.

A complete atomic model is often too complex to appreciate directly, but simplified versions that show a protein’s essential structural features can be
Figure 8–45 X-ray crystallography. (A) A narrow parallel beam of x-rays is directed at a well-ordered crystal (B). Shown here is a protein crystal of ribulose bisphosphate carboxylase, an enzyme with a central role in CO₂ fixation during photosynthesis. Some of the beam is scattered by the atoms in the crystal. The scattered waves reinforce one another at certain points and appear as a pattern of diffraction spots (C). This diffraction pattern, together with the amino acid sequence of the protein, can be used to produce an atomic model (D). The complete atomic model is hard to interpret, but this simplified version, derived from the x-ray diffraction data, shows the protein's structural features clearly (α helices, green; β strands, red). Note that the components pictured in A to D are not shown to scale. (B, courtesy of C. Branden; C, courtesy of J. Hajdu and I. Andersson; D, adapted from original provided by B. Furugren.)

readily derived from it (see Panel 3–2, pp. 138–139). The three-dimensional structures of about 10,000 different proteins have now been determined by x-ray crystallography or by NMR spectroscopy (see below)—enough to begin to see families of common structures emerging. These structures or protein folds often seem to be more conserved in evolution than are the amino acid sequences that form them (see Figure 3–15).

X-ray crystallographic techniques can also be applied to the study of macromolecular complexes. In a recent triumph, the method was used to solve the structure of the ribosome, a large and complex cellular machine made of several RNAs and more than 50 proteins (see Figure 6–64). The determination required the use of a synchrotron, a radiation source that generates x-rays with the intensity needed to analyze the crystals of such large macromolecular complexes.

Molecular Structure Can Also Be Determined Using Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy has been widely used for many years to analyze the structure of small molecules. This technique is now also increasingly applied to the study of small proteins or protein domains. Unlike x-ray crystallography, NMR does not depend on having a crystalline
sample; it simply requires a small volume of concentrated protein solution that is placed in a strong magnetic field.

Certain atomic nuclei, and in particular those of hydrogen, have a magnetic moment or spin: that is, they have an intrinsic magnetization, like a bar magnet. The spin aligns along the strong magnetic field, but it can be changed to a misaligned, excited state in response to applied radiofrequency (RF) pulses of electromagnetic radiation. When the excited hydrogen nuclei return to their aligned state, they emit RF radiation, which can be measured and displayed as a spectrum. The nature of the emitted radiation depends on the environment of each hydrogen nucleus, and if one nucleus is excited, it influences the absorption and emission of radiation by other nuclei that lie close to it. It is consequently possible, by an ingenious elaboration of the basic NMR technique known as two-dimensional NMR, to distinguish the signals from hydrogen nuclei in different amino acid residues and to identify and measure the small shifts in these signals that occur when these hydrogen nuclei lie close enough together to interact: the size of such a shift reveals the distance between the interacting pair of hydrogen atoms. In this way NMR can give information about the distances between the parts of the protein molecule. By combining this information with a knowledge of the amino acid sequence, it is possible in principle to compute the three-dimensional structure of the protein (Figure 8–46).

For technical reasons the structure of small proteins of about 20,000 daltons or less can readily be determined by NMR spectroscopy. Resolution is lost as the size of a macromolecule increases. But recent technical advances have now pushed the limit to about 100,000 daltons, thereby making the majority of proteins accessible for structural analysis by NMR.

The NMR method is especially useful when a protein of interest has resisted attempts at crystallization, a common problem for many membrane proteins. Because NMR studies are performed in solution, this method also offers a convenient means of monitoring changes in protein structure, for example during protein folding or when a substrate binds to the protein. NMR is also used widely to investigate molecules other than proteins and is valuable, for example, as a

![Figure 8–46 NMR spectroscopy. (A) An example of the data from an NMR machine. This two-dimensional NMR spectrum is derived from the C-terminal domain of the enzyme cellulase. The spots represent interactions between hydrogen atoms that are near neighbors in the protein and hence reflects the distance that separates them. Complex computing methods, in conjunction with the known amino acid sequence, enable possible compatible structures to be derived. In (B) 10 structures, which all satisfy the distance constraints equally well, are shown superimposed on one another, giving a good indication of the probable three-dimensional structure. (Courtesy of P. Kraulis.)](image)
method to determine the three-dimensional structures of RNA molecules and the complex carbohydrate side chains of glycoproteins.

Some landmarks in the development of x-ray crystallography and NMR are listed in Table 8–8.

TABLE 8–8 Landmarks in the Development of X-ray Crystallography and NMR and Their Application to Biological Molecules

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1864</td>
<td>Hoppe-Seyler crystallizes, and names, the protein hemoglobin.</td>
</tr>
<tr>
<td>1895</td>
<td>Röntgen observes that a new form of penetrating radiation, which he names x-rays, is produced when cathode rays (electrons) hit a metal target.</td>
</tr>
<tr>
<td>1912</td>
<td>Von Laue obtains the first x-ray diffraction patterns by passing x-rays through a crystal of zinc sulfide. W. L. Bragg proposes a simple relationship between an x-ray diffraction pattern and the arrangement of atoms in a crystal that produce the pattern.</td>
</tr>
<tr>
<td>1926</td>
<td>Summer obtains crystals of the enzyme urease from extracts of jack beans and demonstrates that proteins possess catalytic activity.</td>
</tr>
<tr>
<td>1931</td>
<td>Pauling publishes his first essays on ‘The Nature of the Chemical Bond,’ detailing the rules of covalent bonding.</td>
</tr>
<tr>
<td>1934</td>
<td>Bernal and Crowfoot present the first detailed x-ray diffraction patterns of a protein obtained from crystals of the enzyme pepsin.</td>
</tr>
<tr>
<td>1935</td>
<td>Patterson develops an analytical method for determining interatomic spacings from x-ray data.</td>
</tr>
<tr>
<td>1941</td>
<td>Astbury obtains the first x-ray diffraction pattern of DNA.</td>
</tr>
<tr>
<td>1951</td>
<td>Pauling and Corey propose the structure of a helical conformation of a chain of L-amino acids—the α helix—and the structure of the β sheet, both of which were later found in many proteins.</td>
</tr>
<tr>
<td>1953</td>
<td>Watson and Crick propose the double-helix model of DNA, based on x-ray diffraction patterns obtained by Franklin and Wilkins.</td>
</tr>
<tr>
<td>1954</td>
<td>Perutz and colleagues develop heavy-atom methods to solve the phase problem in protein crystallography.</td>
</tr>
<tr>
<td>1960</td>
<td>Kendrew describes the first detailed structure of a protein (sperm whale myoglobin) to a resolution of 0.2 nm, and Perutz presents a lower-resolution structure of the larger protein hemoglobin.</td>
</tr>
<tr>
<td>1966</td>
<td>Phillips describes the structure of lysozyme, the first enzyme to have its structure analyzed in detail.</td>
</tr>
<tr>
<td>1971</td>
<td>Jeener proposes the use of two-dimensional NMR, and Wuthrich and colleagues first use the method to solve a protein structure in the early 1980s.</td>
</tr>
<tr>
<td>1976</td>
<td>Kim and Rich and Klug and colleagues describe the detailed three-dimensional structure of tRNA determined by x-ray diffraction.</td>
</tr>
<tr>
<td>1977–1978</td>
<td>Holmes and Klug determine the structure of tobacco mosaic virus (TMV), and Harrison and Rossman determine the structure of two small spherical viruses.</td>
</tr>
<tr>
<td>1985</td>
<td>Michel, Deisenhofer and colleagues determine the first structure of a transmembrane protein (a bacterial reaction center) by x-ray crystallography. Henderson and colleagues obtain the structure of bacteriorhodopsin, a transmembrane protein, by high-resolution electron-microscopy methods between 1975 and 1990.</td>
</tr>
</tbody>
</table>

Sequence Similarity Can Provide Clues About Protein Function

Thanks to the proliferation of protein and nucleic acid sequences that are catalogued in genome databases, the function of a gene—and its encoded protein—can often be predicted by simply comparing its sequence with those of previously characterized genes. Because amino acid sequence determines protein structure and structure dictates biochemical function, proteins that share a similar amino acid sequence usually perform similar biochemical functions, even when they are found in distantly related organisms. At present, determining what a newly discovered protein does therefore usually begins with a search for previously identified proteins that are similar in their amino acid sequences.

Searching a collection of known sequences for homologous genes or proteins is typically done over the World-Wide Web, and it simply involves selecting a database and entering the desired sequence. A sequence alignment program—the most popular are BLAST and FASTA—scans the database for similar sequences by sliding the submitted sequence along the archived sequences until a cluster of residues falls into full or partial alignment (Figure 8–47). The results of even a complex search—which can be performed on either a
nucleotide or an amino acid sequence—are returned within minutes. Such comparisons can be used to predict the functions of individual proteins, families of proteins, or even the entire protein complement of a newly sequenced organism.

In the end, however, the predictions that emerge from sequence analysis are often only a tool to direct further experimental investigations.

Fusion Proteins Can Be Used to Analyze Protein Function and to Track Proteins in Living Cells

The location of a protein within the cell often suggests something about its function. Proteins that travel from the cytoplasm to the nucleus when a cell is exposed to a growth factor, for example, may have a role in regulating gene expression in response to that factor. A protein often contains short amino acid sequences that determine its location in a cell. Most nuclear proteins, for example, contain one or more specific short sequences of amino acids that serve as signals for their import into the nucleus after their synthesis in the cytosol (discussed in Chapter 12). These special regions of the protein can be identified by fusing them to an easily detectable protein that lacks such regions and then following the behavior of this surrogate protein in a cell. Such fusion proteins can be readily produced by the recombinant DNA techniques discussed previously.

Another common strategy used both to follow proteins in cells and to purify them rapidly is epitope tagging. In this case, a fusion protein is produced that contains the entire protein being analyzed plus a short peptide of 8 to 12 amino acids (an “epitope”) that can be recognized by a commercially available antibody. The fusion protein can therefore be specifically detected, even in the presence of a large excess of the normal protein, using the anti-epitope antibody and a labeled secondary antibody that can be monitored by light or electron microscopy (Figure 8–48).

Today large numbers of proteins are being tracked in living cells by using a fluorescent marker called green fluorescent protein (GFP). Tagging proteins with GFP is as simple as attaching the gene for GFP to one end of the gene that encodes a protein of interest. In most cases, the resulting GFP fusion protein behaves in the same way as the original protein, and its movement can be monitored by following its fluorescence inside the cell by fluorescence microscopy. (Figure 8–48 Epitope tagging allows the localization or purification of proteins. Using standard genetic engineering techniques, a short epitope tag can be added to a protein of interest. The resulting protein contains the protein being analyzed plus a short peptide that can be recognized by commercially available antibodies. The labeled antibody can be used to follow the cellular localization of the protein or to purify it by immunoprecipitation or affinity chromatography.)
The GFP fusion protein strategy has become a standard way to determine the distribution and dynamics of any protein of interest in living cells. We discuss its use further in Chapter 9.

GFP, and its derivatives of different color, can also be used to monitor protein–protein interactions. In this application, two proteins of interest are each labeled with a different fluorochrome, such that the emission spectrum of one fluorochrome overlaps the absorption spectrum of the second fluorochrome. If the two proteins—and their attached fluorochromes—come very close to each other (within about 1–10 nm), the energy of the absorbed light will be transferred from one fluorochrome to the other. The energy transfer, called fluorescence resonance energy transfer (FRET), is determined by illuminating the first fluorochrome and measuring emission from the second (Figure 8–49). By using two different spectral variants of GFP as the fluorochromes in such studies, one can monitor the interaction of any two protein molecules inside a living cell.

Affinity Chromatography and Immunoprecipitation Allow Identification of Associated Proteins

Because most proteins in the cell function as part of a complex with other proteins, an important way to begin to characterize their biological roles is to identify their binding partners. If an uncharacterized protein binds to a protein whose role in the cell is understood, its function is likely to be related. For example, if a protein is found to be part of the proteasome complex, it is likely to be involved somehow in degrading damaged or misfolded proteins.

Protein affinity chromatography is one method that can be used to isolate and identify proteins that interact physically. To capture interacting proteins, a target protein is attached to polymer beads that are packed into a column. Cellular proteins are washed through the column and those proteins that interact with the target adhere to the affinity matrix (see Figure 8–11C). These proteins can then be eluted and their identity determined by mass spectrometry or another suitable method.

Perhaps the simplest method for identifying proteins that bind to one another tightly is co-immunoprecipitation. In this case, an antibody is used to recognize a specific target protein; affinity reagents that bind to the antibody and are coupled to a solid matrix are then used to drag the complex out of solution to the bottom of a test tube. If this protein is associated tightly enough with another protein when it is captured by the antibody, the partner precipitates as well. This method is useful for identifying proteins that are part of a complex inside cells, including those that interact only transiently—for example when cells are stimulated by signal molecules (discussed in Chapter 15).
Co-immunoprecipitation techniques require having a highly specific antibody against a known cellular protein target, which is not always available. One way to overcome this requirement is to use recombinant DNA techniques to add an epitope tag (see Figure 8–48) or to fuse the target protein to a well-characterized marker protein, such as the small enzyme glutathione S-transferase (GST). Commercially available antibodies directed against the epitope tag or the marker protein can then be used to precipitate the whole fusion protein, including any cellular proteins associated with the protein of interest. If the protein is fused to GST, antibodies may not be needed at all: the hybrid and its binding partners can be readily selected on beads coated with glutathione (Figure 8–50).

In addition to capturing protein complexes on columns or in test tubes, researchers are also developing high-density protein arrays for investigating protein function and protein interactions. These arrays, which contain thousands of different proteins or antibodies spotted onto glass slides or immobilized in tiny wells, allow one to examine the biochemical activities and binding profiles of a large number of proteins at once. To examine protein interactions with such an array, one incubates a labeled protein with each of the target proteins immobilized on the slide and then determines to which of the many proteins the labeled molecule binds.

Protein–Protein Interactions Can Be Identified by Use of the Two-Hybrid System

Methods such as co-immunoprecipitation and affinity chromatography allow the physical isolation of interacting proteins. A successful isolation yields a protein whose identity must then be ascertained by mass spectrometry, and whose gene must be retrieved and cloned before further studies characterizing its activity—or the nature of the protein–protein interaction—can be performed.

Other techniques allow the simultaneous isolation of interacting proteins along with the genes that encode them. The first method we discuss, called the **two-hybrid system**, uses a reporter gene to detect the physical interaction of a pair of proteins inside a yeast cell nucleus. This system has been designed so that when a target protein binds to another protein in the cell, their interaction brings together two halves of a transcriptional activator, which is then able to switch on the expression of the reporter gene.

The technique takes advantage of the modular nature of gene activator proteins (see Figure 7–42). These proteins both bind to DNA and activate transcription—activities that are often performed by two separate protein domains. Using recombinant DNA techniques, the DNA sequence that codes for a target protein is fused with DNA that encodes the DNA-binding domain of a gene activator protein. When this construct is introduced into yeast, the cells produce the target protein attached to this DNA-binding domain (Figure 8–51). This protein binds to the regulatory region of a reporter gene, where it serves as “bait” to fish for proteins that interact with the target protein inside a yeast cell. To prepare a set of potential binding partners, DNA encoding the activation domain of a gene activator protein is ligated to a large mixture of DNA fragments from a cDNA library. Members of this collection of genes—the “prey”—are introduced individually into yeast cells containing the bait. If the yeast cell has received a DNA clone that expresses a prey partner for the bait protein, the two halves of a transcriptional activator are united, switching on the reporter gene (see Figure 8–51). Cells that express this reporter are selected and grown, and the gene (or gene fragment) encoding the prey protein is retrieved and identified through nucleotide sequencing.

Although it sounds complex, the two-hybrid system is relatively simple to use in the laboratory. Although the protein–protein interactions occur in the yeast cell nucleus, proteins from every part of the cell and from any organism can be studied in this way. Of the thousands of protein–protein interactions that have been catalogued in yeast, half have been discovered with such two-hybrid screens.
The two-hybrid system can be scaled up to map the interactions that occur among all of the proteins produced by an organism. In this case, a set of bait fusions is produced for every cellular protein, and each of these constructs is introduced into a separate yeast cell. These cells are then mated to yeast containing the prey library. Those rare cells that are positive for a protein–protein interaction are then characterized. In this way a protein linkage map has been generated for most of the 6,000 proteins in yeast (see Figure 3–78), and similar projects are underway to catalog the protein interactions in \textit{C. elegans} and \textit{Drosophila}.

A related technique, called a \textit{reverse two-hybrid system}, can be used to identify mutations—or chemical compounds—that are able to disrupt specific protein–protein interactions. In this case the reporter gene can be replaced by a gene that kills cells in which the bait and prey proteins interact. Only those cells in which the proteins no longer bind—because an engineered mutation or a test compound prevents them from doing so—can survive. Like knocking out a gene (which we discuss shortly), eliminating a particular molecular interaction can reveal something about the role of the participating proteins in the cell. In addition, compounds that selectively interrupt protein interactions can be medically useful: a drug that prevents a virus from binding to its receptor protein on human cells could help people to avoid infections, for example.

\textbf{Phage Display Methods Also Detect Protein Interactions}

Another powerful method for detecting protein–protein interactions involves introducing genes into a virus that infects the \textit{E. coli} bacterium (a bacteriophage, or “phage”). In this case the DNA encoding the protein of interest (or a smaller peptide fragment of this protein) is fused with a gene encoding one of the proteins that forms the viral coat. When this virus infects \textit{E. coli}, it replicates, producing phage particles that display the hybrid protein on the outside of their coats (Figure 8–52A). This bacteriophage can then be used to fish for binding partners in a large pool of potential target proteins.

However, the most powerful use of this \textit{phage display} method allows one to screen large collections of proteins or peptides for binding to selected targets. This approach requires first generating a library of fusion proteins, much like the prey library in the two-hybrid system. This collection of phage is then screened for binding to a purified protein of interest. For example, the phage library can be passed through an affinity column containing an immobilized target protein. Viruses that display a protein or peptide that binds tightly to the target are captured on the column and can be eluted with excess target protein. Those phage containing a DNA fragment that encodes an interacting protein or peptide are
collected and allowed to replicate in *E. coli*. The DNA from each phage can then be recovered and its nucleotide sequence determined to identify the protein or peptide partner that bound to the target protein. A similar technique has been used to isolate peptides that bind specifically to the inside of the blood vessels associated with human tumors. These peptides are presently being tested as agents for delivering therapeutic anti-cancer compounds directly to such tumors (Figure 8–52B).

Phage display has also been used to generate monoclonal antibodies that recognize a specific target molecule or cell. In this case, a library of phage expressing the appropriate parts of antibody molecules is screened for those phage that bind to a target antigen.

Protein Interactions Can Be Monitored in Real Time Using Surface Plasmon Resonance

Once two proteins—or a protein and a small molecule—are known to associate, it becomes important to characterize their interaction in more detail. Proteins can bind to one another permanently, or engage in transient encounters in which proteins remain associated only temporarily. These dynamic interactions are often regulated through reversible modifications (such as phosphorylation), through ligand binding, or through the presence or absence of other proteins that compete for the same binding site.

To begin to understand these intricacies, one must determine how tightly two proteins associate, how slowly or rapidly molecular complexes assemble and break down over time, and how outside influences can affect these parameters. As we have seen in this chapter, there are many different techniques available to study protein–protein interactions, each with its individual advantages and disadvantages. One particularly useful method for monitoring the dynamics of protein association is called surface plasmon resonance (SPR). The SPR method has been used to characterize a wide variety of molecular interactions, including antibody–antigen binding, ligand–receptor coupling, and the binding of proteins to DNA, carbohydrates, small molecules, and other proteins.

SPR detects binding interactions by monitoring the reflection of a beam of light off the interface between an aqueous solution of potential binding molecules and a biosensor surface carrying immobilized bait protein. The bait protein is attached to a very thin layer of metal that coats one side of a glass prism (Figure 8–53). A light beam is passed through the prism; at a certain angle, called the resonance angle, some of the energy from the light interacts with the cloud of electrons in the metal film, generating a plasmon—an oscillation of the electrons at right angles to the plane of the film, bouncing up and down between its upper and lower surfaces like a weight on a spring. The plasmon, in turn,
generates an electrical field that extends a short distance—about the wavelength of the light—above and below the metal surface. Any change in the composition of the environment within the range of the electrical field causes a measurable change in the resonance angle.

To measure binding, a solution containing proteins (or other molecules) that might interact with the immobilized bait protein is allowed to flow past the biosensor surface. When proteins bind to the bait, the composition of the molecular complexes on the metal surface change, causing a change in the resonance angle (see Figure 8–53). The changes in the resonance angle are monitored in real time and reflect the kinetics of the association—or dissociation—of molecules with the bait protein. The association rate \(k_{\text{on}} \) is measured as the molecules interact, and the dissociation rate \(k_{\text{off}} \) is determined as buffer washes the bound molecules from the sensor surface. A binding constant \(K \) is calculated by dividing \(k_{\text{off}} \) by \(k_{\text{on}} \). In addition to determining the kinetics, SPR can be used to determine the number of molecules that are bound in each complex: the magnitude of the SPR signal change is proportional to the mass of the immobilized complex.

The SPR method is particularly useful because it requires only small amounts of proteins, the proteins do not have to be labeled in any way, and protein–protein interactions can be monitored in real time.

![Figure 8–53 Surface plasmon resonance.](image)

(A) SPR can detect binding interactions by monitoring the reflection of a beam of light off the interface between an aqueous solution of potential binding molecules (green) and a biosensor surface coated with an immobilized bait protein (red). (B) A solution of prey proteins is allowed to flow past the immobilized bait protein. Binding of prey molecules to bait proteins produces a measurable change in the resonance angle. These changes, monitored in real time, reflect the association and dissociation of the molecular complexes.
DNA Footprinting Reveals the Sites Where Proteins Bind on a DNA Molecule

So far we have concentrated on examining protein–protein interactions. But some proteins act by binding to DNA. Most of these proteins have a central role in determining which genes are active in a particular cell by binding to regulatory DNA sequences, which are usually located outside the coding regions of a gene.

In analyzing how such a protein functions, it is important to identify the specific nucleotide sequences to which it binds. A method used for this purpose is called DNA footprinting. First, a pure DNA fragment that is labeled at one end with 32P is isolated (see Figure 8–24B); this molecule is then cleaved with a nuclease or a chemical that makes random single-stranded cuts in the DNA. After the DNA molecule is denatured to separate its two strands, the resultant fragments from the labeled strand are separated on a gel and detected by autoradiography. The pattern of bands from DNA cut in the presence of a DNA-binding protein is compared with that from DNA cut in its absence. When the protein is present, it covers the nucleotides at its binding site and protects their phosphodiester bonds from cleavage. As a result, the labeled fragments that terminate in the binding site are missing, leaving a gap in the gel pattern called a “footprint” (Figure 8–54). Similar methods can be used to determine the binding sites of proteins on RNA.

Figure 8–54 The DNA footprinting technique. (A) This technique requires a DNA molecule that has been labeled at one end (see Figure 8–24B). The protein shown binds tightly to a specific DNA sequence that is seven nucleotides long, thereby protecting these seven nucleotides from the cleaving agent. If the same reaction were performed without the DNA-binding protein, a complete ladder of bands would be seen on the gel (not shown). (B) An actual footprint used to determine the binding site for a human protein that stimulates the transcription of specific eucaryotic genes. These results locate the binding site about 60 nucleotides upstream from the start site for RNA synthesis. The cleaving agent was a small, iron-containing organic molecule that normally cuts at every phosphodiester bond with nearly equal frequency. (B, courtesy of Michele Sawadogo and Robert Roeder.)
Summary

Many powerful techniques are used to study the structure and function of a protein. To determine the three-dimensional structure of a protein at atomic resolution, large proteins have to be crystallized and studied by x-ray diffraction. The structure of small proteins in solution can be determined by nuclear magnetic resonance analysis. Because proteins with similar structures often have similar functions, the biochemical activity of a protein can sometimes be predicted by searching for known proteins that are similar in their amino acid sequences.

Further clues to the function of a protein can be derived from examining its subcellular distribution. Fusion of the protein with a molecular tag, such as the green fluorescent protein (GFP), allows one to track its movement inside the cell. Proteins that enter the nucleus and bind to DNA can be further characterized by footprint analysis, a technique used to determine which regulatory sequences the protein binds to as it controls gene transcription.

All proteins function by binding to other proteins or molecules, and many methods exist for studying protein–protein interactions and identifying potential protein partners. Either protein affinity chromatography or co-immunoprecipitation by antibodies directed against a target protein will allow physical isolation of interacting proteins. Other techniques, such as the two-hybrid system or phage display, permit the simultaneous isolation of interacting proteins and the genes that encode them. The identity of the proteins recovered from any of these approaches is then ascertained by determining the sequence of the protein or its corresponding gene.

STUDYING GENE EXPRESSION AND FUNCTION

Ultimately, one wishes to determine how genes—and the proteins they encode—function in the intact organism. Although it may sound counterintuitive, one of the most direct ways to find out what a gene does is to see what happens to the organism when that gene is missing. Studying mutant organisms that have acquired changes or deletions in their nucleotide sequences is a time-honored practice in biology. Because mutations can interrupt cellular processes, mutants often hold the key to understanding gene function. In the classical approach to the important field of genetics, one begins by isolating mutants that have an interesting or unusual appearance: fruit flies with white eyes or curly wings, for example. Working backward from the phenotype—the appearance or behavior of the individual—one then determines the organism’s genotype, the form of the gene responsible for that characteristic (Panel 8–1).

Today, with numerous genome projects adding tens of thousands of nucleotide sequences to the public databases each day, the exploration of gene function often begins with a DNA sequence. Here the challenge is to translate sequence into function. One approach, discussed earlier in the chapter, is to search databases for well-characterized proteins that have similar amino acid sequences to the protein encoded by a new gene, and from there employ some of the methods described in the previous section to explore the gene’s function further. But to tackle directly the problem of how a gene functions in a cell or organism, the most effective approach involves studying mutants that either lack the gene or express an altered version of it. Determining which cellular processes have been disrupted or compromised in such mutants will then frequently provide a window to a gene’s biological role.

In this section, we describe several different approaches to determining a gene’s function, whether one starts from a DNA sequence or from an organism with an interesting phenotype. We begin with the classical genetic approach to studying genes and gene function. These studies start with a genetic screen for isolating mutants of interest, and then proceed toward identification of the gene or genes responsible for the observed phenotype. We then review the collection of techniques that fall under the umbrella of reverse genetics, in which one begins with a gene or gene sequence and attempts to determine its function. This approach often involves some intelligent guesswork—searching for homologous sequences and determining when and where a gene is expressed—as well as generating mutant organisms and characterizing their phenotype.
GENES AND PHENOTYPES

Gene: a functional unit of inheritance, usually corresponding to the segment of DNA coding for a single protein.

Genome: an organism’s set of genes.

locus: the site of the gene in the genome

alleles: alternative forms of a gene

Wild-type: the normal, naturally occurring type

Mutant: differing from the wild-type because of a genetic change (a mutation)

homozygous A/A
heterozygous a/A
homozygous a/a

allele A is dominant (relative to a); allele a is recessive (relative to A)

In the example above, the phenotype of the heterozygote is the same as that of one of the homozygotes; in cases where it is different from both, the two alleles are said to be co-dominant.

CHROMOSOMES

a chromosome at the beginning of the cell cycle, in G1 phase; the single long bar represents one long double helix of DNA

a chromosome at the end of the cell cycle, in metaphase; it is duplicated and condensed, consisting of two identical sister chromatids (each containing one DNA double helix) joined at the centromere.

A normal diploid chromosome set, as seen in a metaphase spread, prepared by bursting open a cell at metaphase and staining the scattered chromosomes. In the example shown schematically here, there are three pairs of autosomes (chromosomes inherited symmetrically from both parents, regardless of sex) and two sex chromosomes—an X from the mother and a Y from the father. The numbers and types of sex chromosomes and their role in sex determination are variable from one class of organisms to another, as is the number of pairs of autosomes.

THE HAPLOID–DIPLOID CYCLE OF SEXUAL REPRODUCTION

For simplicity, the cycle is shown for only one chromosome/chromosome pair.

MEIOSIS AND GENETIC RECOMBINATION

The greater the distance between two loci on a single chromosome, the greater is the chance that they will be separated by crossing-over occurring at a site between them. If two genes are thus reassorted in x% of gametes, they are said to be separated on a chromosome by a genetic map distance of x map units (or x centimorgans).
TYPES OF MUTATIONS

POINT MUTATION: maps to a single site in the genome, corresponding to a single nucleotide pair or a very small part of a single gene

lethal mutation: causes the developing organism to die prematurely.
conditional mutation: produces its phenotypic effect only under certain conditions, called the restrictive conditions. Under other conditions—the permissive conditions—the effect is not seen. For a temperature-sensitive mutation, the restrictive condition typically is high temperature, while the permissive condition is low temperature.
loss-of-function mutation: either reduces or abolishes the activity of the gene. These are the commonest class of mutations. Loss-of-function mutations are usually recessive—the organism can usually function normally as long as it retains at least one normal copy of the affected gene.
null mutation: a loss-of-function mutation that completely abolishes the activity of the gene.

gain-of-function mutation: increases the activity of the gene or makes it active in inappropriate circumstances; these mutations are usually dominant.
dominant negative mutation: dominant-acting mutation that blocks gene activity, causing a loss-of-function phenotype even in the presence of a normal copy of the gene. This phenomenon occurs when the mutant gene product interferes with the function of the normal gene product.
suppressor mutation: suppresses the phenotypic effect of another mutation, so that the double mutant seems normal. An intragenic suppressor mutation lies within the gene affected by the first mutation; an extragenic suppressor mutation lies in a second gene—often one whose product interacts directly with the product of the first.

INVERSION: inverts a segment of a chromosome

DELETION: deletes a segment of a chromosome

TRANSLOCATION: breaks off a segment from one chromosome and attaches it to another

TWO GENES OR ONE?

Given two mutations that produce the same phenotype, how can we tell whether they are mutations in the same gene? If the mutations are recessive (as they most often are), the answer can be found by a complementation test.

COMPLEMENTATION: MUTATIONS IN TWO DIFFERENT GENES

homozygous mutant mother homozygous mutant father

hybrid offspring shows normal phenotype: one normal copy of each gene is present

NONCOMPLEMENTATION: TWO INDEPENDENT MUTATIONS IN THE SAME GENE

homozygous mutant mother homozygous mutant father

hybrid offspring shows mutant phenotype: no normal copies of the mutated gene are present
The Classical Approach Begins with Random Mutagenesis

Before the advent of gene cloning technology, most genes were identified by the processes disrupted when the gene was mutated. This classical genetic approach—identifying the genes responsible for mutant phenotypes—is most easily performed in organisms that reproduce rapidly and are amenable to genetic manipulation, such as bacteria, yeasts, nematode worms, and fruit flies. Although spontaneous mutants can sometimes be found by examining extremely large populations—thousands or tens of thousands of individual organisms—the process of isolating mutants can be made much more efficient by generating mutations with agents that damage DNA. By treating organisms with mutagens, very large numbers of mutants can be created quickly and then screened for a particular defect of interest, as we will see shortly.

An alternative approach to chemical or radiation mutagenesis is called insertional mutagenesis. This method relies on the fact that exogenous DNA inserted randomly into the genome can produce mutations if the inserted fragment interrupts a gene or its regulatory sequences. The inserted DNA, whose sequence is known, then serves as a molecular tag that aids in the subsequent identification and cloning of the disrupted gene (Figure 8–55). In Drosophila, the use of the transposable P element to inactivate genes has revolutionized the study of gene function in the fruit fly. Transposable elements (see Table 5–3, p. 287) have also been used to generate mutants in bacteria, yeast, and in the flowering plant Arabidopsis. Retroviruses, which copy themselves into the host genome (see Figure 5–73), have been used to disrupt genes in zebrafish and in mice.

Such studies are well suited for dissecting biological processes in worms and flies, but how can we study gene function in humans? Unlike the organisms we have been discussing, humans do not reproduce rapidly, and they are not intentionally treated with mutagens. Moreover, any human with a serious defect in an essential process, such as DNA replication, would die long before birth.

There are two answers to the question of how we study human genes. First, because genes and gene functions have been so highly conserved throughout evolution, the study of less complex model organisms reveals critical information about similar genes and processes in humans. The corresponding human genes can then be studied further in cultured human cells. Second, many mutations that are not lethal—tissue-specific defects in lysosomes or in cell-surface receptors, for example—have arisen spontaneously in the human population. Analyses of the phenotypes of the affected individuals, together with studies of their cultured cells, have provided many unique insights into important human cell functions. Although such mutations are rare, they are very efficiently discovered because of a unique human property: the mutant individuals call attention to themselves by seeking special medical care.

Genetic Screens Identify Mutants Deficient in Cellular Processes

Once a collection of mutants in a model organism such as yeast or flies has been produced, one generally must examine thousands of individuals to find the altered phenotype of interest. Such a search is called a genetic screen. Because obtaining a mutation in a gene of interest depends on the likelihood that the gene will be inactivated or otherwise mutated during random mutagenesis, the larger the genome, the less likely it is that any particular gene will be mutated. Therefore, the more complex the organism, the more mutants must be examined to avoid missing genes. The phenotype being screened for can be simple or complex. Simple phenotypes are easiest to detect: a metabolic deficiency, for example, in which an organism is no longer able to grow in the absence of a particular amino acid or nutrient.

Phenotypes that are more complex, for example mutations that cause defects in learning or memory, may require more elaborate screens (Figure 8–56). But even genetic screens that are used to dissect complex physiological systems should be as simple as possible in design, and, if possible, should permit
the examination of large numbers of mutants simultaneously. As an example, one particularly elegant screen was designed to search for genes involved in visual processing in the zebrafish. The basis of this screen, which monitors the fishes’ response to motion, is a change in behavior. Wild-type fish tend to swim in the direction of a perceived motion, while mutants with defects in their visual systems swim in random directions—a behavior that is easily detected. One mutant discovered in this screen is called *lakritz*, which is missing 80% of the retinal ganglion cells that help to relay visual signals from the eye to the brain. As the cellular organization of the zebrafish retina mirrors that of all vertebrates, the study of such mutants should also provide insights into visual processing in humans.

Because defects in genes that are required for fundamental cell processes—RNA synthesis and processing or cell cycle control, for example—are usually lethal, the functions of these genes are often studied in temperature-sensitive mutants. In these mutants the protein product of the mutant gene functions normally at a medium temperature, but can be inactivated by a small increase or decrease in temperature. Thus the abnormality can be switched on and off experimentally simply by changing the temperature. A cell containing a temperature-sensitive mutation in a gene essential for survival at a non-permissive temperature can nevertheless grow at the normal or permissive temperature (Figure 8–57). The temperature-sensitive gene in such a mutant usually contains a point mutation that causes a subtle change in its protein product.

Many temperature-sensitive mutants were isolated in the genes that encode the bacterial proteins required for DNA replication by screening populations of mutagen-treated bacteria for cells that stop making DNA when they are warmed from 30°C to 42°C. These mutants were later used to identify and characterize the corresponding DNA replication proteins (discussed in Chapter 5). Temperature-sensitive mutants also led to the identification of many proteins involved in regulating the cell cycle and in moving proteins through the secretory pathway in yeast (see Panel 13–1). Related screening approaches have demonstrated the function of enzymes involved in the principal metabolic pathways of bacteria and yeast (discussed in Chapter 2), as well as discovering many of the gene products.
A Complementation Test Reveals Whether Two Mutations Are in the Same or in Different Genes

A large-scale genetic screen can turn up many different mutants that show the same phenotype. These defects might lie in different genes that function in the same process, or they might represent different mutations in the same gene. How can we tell, then, whether two mutations that produce the same phenotype occur in the same gene or in different genes? If the mutations are recessive—if, for example, they represent a loss of function of a particular gene—a complementation test can be used to ascertain whether the mutations fall in the same or in different genes. In the simplest type of complementation test, an individual that is homozygous for one mutation—that is, it possesses two identical alleles of the mutant gene in question—is mated with an individual that is homozygous for the other mutation. If the two mutations are in the same gene, the offspring show the mutant phenotype, because they still will have no normal copies of the gene in question (see Panel 8–1, pp. 526–527). If, in contrast, the mutations fall in different genes, the resulting offspring show a normal phenotype. They retain one normal copy (and one mutant copy) of each gene. The mutations thereby complement one another and restore a normal phenotype. Complementation testing of mutants identified during genetic screens has revealed, for example, that 5 genes are required for yeast to digest the sugar galactose; that 20 genes are needed for E. coli to build a functional flagellum; that 48 genes are involved in assembling bacteriophage T4 viral particles; and that hundreds of genes are involved in the development of an adult nematode worm from a fertilized egg.

Once a set of genes involved in a particular biological process has been identified, the next step is to determine in which order the genes function. Determining when a gene acts can facilitate the reconstruction of entire genetic or biochemical pathways, and such studies have been central to our understanding of metabolism, signal transduction, and many other developmental and physiological processes. In essence, untangling the order in which genes function requires careful characterization of the phenotype caused by mutations in each different gene. Imagine, for example, that mutations in a handful of genes all cause an arrest in cell division during early embryo development. Close examination of each mutant may reveal that some act extremely early, preventing the fertilized egg from dividing into two cells. Other mutations may allow early cell divisions but prevent the embryo from reaching the blastula stage.

To test predictions made about the order in which genes function, organisms can be made that are mutant in two different genes. If these mutations affect two different steps in the same process, such double mutants should have a phenotype identical to that of the mutation that acts earliest in the pathway. As an example, the pathway of protein secretion in yeast has been deciphered in this manner. Different mutations in this pathway cause proteins to accumulate aberrantly in the endoplasmic reticulum (ER) or in the Golgi apparatus. When a cell is engineered to harbor both a mutation that blocks protein processing in the ER and a mutation that blocks processing in the Golgi compartment, proteins accumulate in the ER. This indicates that proteins must pass through the ER before being sent to the Golgi before secretion (Figure 8–58).

Genes Can Be Located by Linkage Analysis

With mutants in hand, the next step is to identify the gene or genes that seem to be responsible for the altered phenotype. If insertional mutagenesis was used for the original mutagenesis, locating the disrupted gene is fairly simple. DNA fragments containing the insertion (a transposon or a retrovirus, for example) are collected and amplified, and the nucleotide sequence of the flanking DNA is determined. This sequence is then used to search a DNA database to identify the gene that was interrupted by insertion of the transposable element.
If a DNA-damaging chemical was used to generate the mutants, identifying the inactivated gene is often more laborious and can be accomplished by several different approaches. In one, the first step is to determine where on the genome the gene is located. To map a newly discovered gene, its rough chromosomal location is first determined by assessing how far the gene lies from other known genes in the genome. Estimating the distance between genetic loci is usually done by linkage analysis, a technique that relies on the fact that genes that lie near one another on a chromosome tend to be inherited together. The closer the genes are, the greater the likelihood they will be passed to offspring as a pair. Even closely linked genes, however, can be separated by recombination during meiosis. The larger the distance between two genetic loci, the greater the chance that they will be separated by a crossover (see Panel 8–1, pp. 526–527). By calculating the recombination frequency between two genes, the approximate distance between them can be determined.

Because genes are not always located close enough to one another to allow a precise pinpointing of their position, linkage analyses often rely on physical markers along the genome for estimating the location of an unknown gene. These markers are generally nucleotide fragments, with a known sequence and genome location, that can exist in at least two allelic forms. Single-nucleotide polymorphisms (SNPs), for example, are short sequences that differ by one or more nucleotides among individuals in a population. SNPs can be detected by hybridization techniques. Many such physical markers, distributed all along the length of chromosomes, have been collected for a variety of organisms, including more than 10^6 for humans. If the distribution of these markers is sufficiently dense, one can, through a linkage analysis that tests for the tight coinheritance of one or more SNPs with the mutant phenotype, narrow the potential location of a gene to a chromosomal region that may contain only a few gene sequences. These are then considered candidate genes, and their structure and function can be tested directly to determine which gene is responsible for the original mutant phenotype.

Linkage analysis can be used in the same way to identify the genes responsible for heritable human disorders. Such studies require that DNA samples be collected from a large number of families affected by the disease. These samples are examined for the presence of physical markers such as SNPs that seem to be closely linked to the disease gene—these sequences would always be inherited by individuals who have the disease, and not by their unaffected relatives. The disease gene is then located as described above (Figure 8–59). The genes for cystic fibrosis and Huntington’s disease, for example, were discovered in this manner.

Searching for Homology Can Help Predict a Gene’s Function

Once a gene has been identified, its function can often be predicted by identifying homologous genes whose functions are already known. As we discussed earlier, databases containing nucleotide sequences from a variety of organisms—including the complete genome sequences of many dozens of microbes, *C. elegans*, *A. thaliana*, *D. melanogaster*, and human—can be searched for sequences that are similar to those of the uncharacterized target gene.
When analyzing a newly sequenced genome, such a search serves as a first-pass attempt to assign functions to as many genes as possible, a process called annotation. Further genetic and biochemical studies are then performed to confirm whether the gene encodes a product with the predicted function, as we discuss shortly. Homology analysis does not always reveal information about function: in the case of the yeast genome, 30% of the previously uncharacterized genes could be assigned a putative function by homology analysis; 10% had homologues whose function was also unknown; and another 30% had no homologues in any existing databases. (The remaining 30% of the genes had been identified before sequencing the yeast genome.)

In some cases, a homology search turns up a gene in organism A which produces a protein that, in a different organism, is fused to a second protein that is produced by an independent gene in organism A. In yeast, for example, two separate genes encode two proteins that are involved in the synthesis of tryptophan; in E. coli, however, these two genes are fused into one (Figure 8–60). Knowledge that these two proteins in yeast correspond to two domains in a single bacterial protein means that they are likely to be functionally associated, and probably work together in a protein complex. More generally, this approach is used to establish functional links between genes that, for most organisms, are widely separated in the genome.

Reporter Genes Reveal When and Where a Gene Is Expressed

Clues to gene function can often be obtained by examining when and where a gene is expressed in the cell or in the whole organism. Determining the pattern and timing of gene expression can be accomplished by replacing the coding...
portion of the gene under study with a reporter gene. In most cases, the expression of the reporter gene is then monitored by tracking the fluorescence or enzymatic activity of its protein product (pp. 518–519).

As discussed in detail in Chapter 7, gene expression is controlled by regulatory DNA sequences, located upstream or downstream of the coding region, which are not generally transcribed. These regulatory sequences, which control which cells will express a gene and under what conditions, can also be made to drive the expression of a reporter gene. One simply replaces the target gene’s coding sequence with that of the reporter gene, and introduces these recombinant DNA molecules into cells. The level, timing, and cell specificity of reporter protein production reflect the action of the regulatory sequences that belong to the original gene (Figure 8–61).

Several other techniques, discussed previously, can also be used to determine the expression pattern of a gene. Hybridization techniques such as Northern analysis (see Figure 8–27) and in situ hybridization for RNA detection (see Figure 8–29) can reveal when genes are transcribed and in which tissue, and how much mRNA they produce.

Microarrays Monitor the Expression of Thousands of Genes at Once

So far we have discussed techniques that can be used to monitor the expression of only a single gene at a time. Many of these methods are fairly labor-intensive: generating reporter gene constructs or GFP fusions requires manipulating DNA and transfecting cells with the resulting recombinant molecules. Even Northern analyses are limited in scope by the number of samples that can be run on an agarose gel. Developed in the 1990s, DNA **microarrays** have revolutionized the way in which gene expression is now analyzed by allowing the RNA products of thousands of genes to be monitored at once. By examining the expression of so many genes simultaneously, we can now begin to identify and study the gene expression patterns that underlie cellular physiology: we can see which genes are switched on (or off) as cells grow, divide, or respond to hormones or to toxins.

Figure 8–61 Using a reporter protein to determine the pattern of a gene’s expression. (A) In this example the coding sequence for protein X is replaced by the coding sequence for protein Y. (B) Various fragments of DNA containing candidate regulatory sequences are added in combinations. The recombinant DNA molecules are then tested for expression after their transfection into a variety of different types of mammalian cells, and the results are summarized in (C). For experiments in eucaryotic cells, two commonly used reporter proteins are the enzymes β-galactosidase (β-gal) and green fluorescent protein or GFP (see Figure 9–44). Figure 7–39 shows an example in which the β-gal gene is used to monitor the activity of the eve gene regulatory sequence in a Drosophila embryo.
DNA microarrays are little more than glass microscope slides studded with a large number of DNA fragments, each containing a nucleotide sequence that serves as a probe for a specific gene. The most dense arrays may contain tens of thousands of these fragments in an area smaller than a postage stamp, allowing thousands of hybridization reactions to be performed in parallel (Figure 8–62). Some microarrays are generated from large DNA fragments that have been generated by PCR and then spotted onto the slides by a robot. Others contain short oligonucleotides that are synthesized on the surface of the glass wafer with techniques similar to those that are used to etch circuits onto computer chips. In either case, the exact sequence—and position—of every probe on the chip is known. Thus any nucleotide fragment that hybridizes to a probe on the array can be identified as the product of a specific gene simply by detecting the position to which it is bound.

To use a DNA microarray to monitor gene expression, mRNA from the cells being studied is first extracted and converted to cDNA (see Figure 8–34). The cDNA is then labeled with a fluorescent probe. The microarray is incubated with this labeled cDNA sample and hybridization is allowed to occur (see Figure 8–62). The array is then washed to remove cDNA that is not tightly bound, and the positions in the microarray to which labeled DNA fragments have bound are identified by an automated scanning-laser microscope. The array positions are then matched to the particular gene whose sample of DNA was spotted in this location.

Typically the fluorescent DNA from the experimental samples (labeled, for example, with a red fluorescent dye) are mixed with a reference sample of cDNA fragments labeled with a differently colored fluorescent dye (green, for example). Thus, if the amount of RNA expressed from a particular gene in the cells of interest is increased relative to that of the reference sample, the resulting spot is red. Conversely, if the gene's expression is decreased relative to the reference sample, the spot is green. Using such an internal reference, gene expression profiles can be tabulated with great precision.

So far, DNA microarrays have been used to examine everything from the change in gene expression that make strawberries ripen to the gene expression “signatures” of different types of human cancer cells (see Figure 7–3). Arrays that contain probes representing all 6000 yeast genes have been used to monitor the changes that occur in gene expression as yeast shift from fermenting glucose to growing on ethanol; as they respond to a sudden shift to heat or cold; and as they proceed through different stages of the cell cycle. The first study showed that, as yeast use up the last glucose in their medium, their gene expression pattern changes markedly: nearly 900 genes are more actively transcribed, while another 1200 decrease in activity. About half of these genes have no known function, although this study suggests that they are somehow involved in the metabolic reprogramming that occurs when yeast cells shift from fermentation to respiration.
Comprehensive studies of gene expression also provide an additional layer of information that is useful for predicting gene function. Earlier we discussed how identifying a protein’s interaction partners can yield clues about that protein's function. A similar principle holds true for genes: information about a gene's function can be deduced by identifying genes that share its expression pattern. Using a technique called cluster analysis, one can identify sets of genes that are coordinately regulated. Genes that are turned on or turned off together under a variety of different circumstances may work in concert in the cell: they may encode proteins that are part of the same multiprotein machine, or proteins that are involved in a complex coordinated activity, such as DNA replication or RNA splicing. Characterizing an unknown gene’s function by grouping it with known genes that share its transcriptional behavior is sometimes called “guilt by association.” Cluster analyses have been used to analyze the gene expression profiles that underlie many interesting biological processes, including wound healing in humans (Figure 8–63).

Targeted Mutations Can Reveal Gene Function

Although in rapidly reproducing organisms it is often not difficult to obtain mutants that are deficient in a particular process, such as DNA replication or eye development, it can take a long time to trace the defect to a particular altered protein. Recently, recombinant DNA technology and the explosion in genome sequencing have made possible a different type of genetic approach. Instead of beginning with a randomly generated mutant and using it to identify a gene and its protein, one can start with a particular gene and proceed to make mutations in it, creating mutant cells or organisms so as to analyze the gene’s function. Because the new approach reverses the traditional direction of genetic discovery—proceeding from genes and proteins to mutants, rather than vice versa—it is commonly referred to as reverse genetics.

Reverse genetics begins with a cloned gene, a protein with interesting properties that has been isolated from a cell, or simply a genome sequence. If the starting point is a protein, the gene encoding it is first identified and, if necessary, its nucleotide sequence is determined. The gene sequence can then be altered in vitro to create a mutant version. This engineered mutant gene, together with an appropriate regulatory region, is transferred into a cell. Inside the cell, it can integrate into a chromosome, becoming a permanent part of the cell’s genome. All of the descendants of the modified cell will now contain the mutant gene.

If the original cell used for the gene transfer is a fertilized egg, whole multicellular organisms can be obtained that contain the mutant gene, provided that the mutation does not cause lethality. In some of these animals, the altered gene will be incorporated into the germ cells—a germline mutation—allowing the mutant gene to be passed on to their progeny.

Genetic transformations of this kind are now routinely performed with organisms as complex as fruit flies and mammals. Technically, even humans could now be transformed in this way, although such procedures are not undertaken, even for therapeutic purposes, for fear of the unpredictable aberrations that might occur in such individuals.

Earlier in this chapter we discussed other approaches to discover a gene’s function, including searching for homologous genes in other organisms and
determining when and where a gene is expressed. This type of information is especially useful in suggesting what sort of phenotypes to look for in the mutant organisms. A gene that is expressed only in adult liver, for example, may have a role in degrading toxins, but is not likely to affect the development of the eye. All of these approaches can be used either to study single genes or to attempt a large-scale analysis of the function of every gene in an organism—a burgeoning field known as functional genomics.

Cells and Animals Containing Mutated Genes Can Be Made to Order

We have seen that searching for homologous genes and analyzing gene expression patterns can provide clues about gene function, but they do not reveal what exactly a gene does inside a cell. Genetics provides a powerful solution to this problem, because mutants that lack a particular gene may quickly reveal the function of the protein that it encodes. Genetic engineering techniques allow one to specifically produce such gene knockouts, as we will see. However, one can also generate mutants that express a gene at abnormally high levels (overexpression), in the wrong tissue or at the wrong time (misexpression), or in a slightly altered form that exerts a dominant phenotype. To facilitate such studies of gene function, the coding sequence of a gene and its regulatory regions can be engineered to change the functional properties of the protein product, the amount of protein made, or the particular cell type in which the protein is produced.

Altered genes are introduced into cells in a variety of ways, some of which are described in detail in Chapter 9. DNA can be microinjected into mammalian cells with a glass micropipette or introduced by a virus that has been engineered to carry foreign genes. In plant cells, genes are frequently introduced by a technique called particle bombardment: DNA samples are painted onto tiny gold beads and then literally shot through the cell wall with a specially modified gun. Electroporation is the method of choice for introducing DNA into bacteria and some other cells. In this technique, a brief electric shock renders the cell membrane temporarily permeable, allowing foreign DNA to enter the cytoplasm.

We will now examine how the study of such mutant cells and organisms allows the dissection of biological pathways.

The Normal Gene in a Cell Can Be Directly Replaced by an Engineered Mutant Gene in Bacteria and Some Lower Eucaryotes

Unlike higher eucaryotes (which are multicellular and diploid), bacteria, yeasts, and the cellular slime mold Dictyostelium generally exist as haploid single cells. In these organisms an artificially introduced DNA molecule carrying a mutant gene can, with a relatively high frequency, replace the single copy of the normal gene by homologous recombination (see p. 276), so that it is easy to produce cells in which the mutant gene has replaced the normal gene (Figure 8–64A). In
this way cells can be made to order that produce an altered form of any specific protein or RNA molecule instead of the normal form of the molecule. If the mutant gene is completely inactive and the gene product normally performs an essential function, the cell dies; but in this case a less severely mutated version of the gene can be used to replace the normal gene, so that the mutant cell survives but is abnormal in the process for which the gene is required. Often the mutant of choice is one that produces a temperature-sensitive gene product, which functions normally at one temperature but is inactivated when cells are shifted to a higher or lower temperature.

The ability to perform direct gene replacements in lower eucaryotes, combined with the power of standard genetic analyses in these haploid organisms, explains in large part why studies in these types of cells have been so important for working out the details of those processes that are shared by all eucaryotes. As we shall see, gene replacements are possible, but more difficult to perform in higher eucaryotes, for reasons that are not entirely understood.

Engineered Genes Can Be Used to Create Specific Dominant Negative Mutations in Diploid Organisms

Higher eucaryotes, such as mammals, fruit flies, or worms, are diploid and therefore have two copies of each chromosome. Moreover, transfection with an altered gene generally leads to gene addition rather than gene replacement: the altered gene inserts at a random location in the genome, so that the cell (or the organism) ends up with the mutated gene in addition to its normal gene copies.

Because gene addition is much more easily accomplished than gene replacement in higher eucaryotic cells, it is useful to create specific dominant negative mutations in which a mutant gene eliminates the activity of its normal counterparts in the cell. One ingenious approach exploits the specificity of hybridization reactions between two complementary nucleic acid chains. Normally, only one of the two DNA strands in a given portion of double helix is transcribed into RNA, and it is always the same strand for a given gene (see Figure 6–14). If a cloned gene is engineered so that the opposite DNA strand is transcribed instead, it will produce antisense RNA molecules that have a sequence complementary to the normal RNA transcripts. Such antisense RNA, when synthesized in large enough amounts, can often hybridize with the “sense” RNA made by the normal genes and thereby inhibit the synthesis of the corresponding protein (Figure 8–65). A related method involves synthesizing short antisense nucleic acid molecules chemically or enzymatically and then injecting (or otherwise delivering) them into cells, again blocking (although only temporarily) production of the corresponding protein. To avoid degradation of the
injected nucleic acid, a stable synthetic RNA analog, called morpholino-RNA, is often used instead of ordinary RNA.

As investigators continued to explore the antisense RNA strategy, they made an interesting discovery. An antisense RNA strand can block gene expression, but a preparation of double-stranded RNA (dsRNA), containing both the sense and antisense strands of a target gene, inhibit the activity of target genes even more effectively (see Figure 7–107). This phenomenon, dubbed RNA interference (RNAi), has now been exploited for examining gene function in several organisms.

The RNAi technique has been widely used to study gene function in the nematode C. elegans. When working with worms, introducing the dsRNA is quite simple: RNA can be injected directly into the intestine of the animal, or the worm can be fed with E. coli expressing the dsRNA (Figure 8–66A). The RNA is distributed throughout the body of the worm and is found to inhibit expression of the target gene in different tissue types. Further, as explained in Figure 7–107, the interference is frequently inherited by the progeny of the injected animal. Because the entire genome of C. elegans has been sequenced, RNAi is being used to help in assigning functions to the entire complement of worm genes. In one study, researchers were able to inhibit 96% of the approximately 2300 predicted genes on C. elegans chromosome III. In this way, they identified 133 genes involved in cell division in C. elegans embryos (Figure 8–66C). Of these, only 11 had been previously ascribed a function by direct experimentation.

For unknown reasons, RNA interference does not efficiently inactivate all genes. And interference can sometimes suppress the activity of a target gene in one tissue and not another. An alternative way to produce a dominant negative mutation takes advantage of the fact that most proteins function as part of a larger protein complex. Such complexes can often be inactivated by the inclusion of just one nonfunctional component. Therefore, by designing a gene that produces large quantities of a mutant protein that is inactive but still able to assemble into the complex, it is often possible to produce a cell in which all the complexes are inactivated despite the presence of the normal protein (Figure 8–67).

![Figure 8–66 Dominant negative mutations created by RNA interference.](image)

![Figure 8–67 A dominant negative effect of a protein.](image)
If a protein is required for the survival of the cell (or the organism), a dominant negative mutant dies, making it impossible to test the function of the protein. To avoid this problem, one can couple the mutant gene to control sequences that have been engineered to produce the gene product only on command—for example, in response to an increase in temperature or to the presence of a specific signaling molecule. Cells or organisms containing such a dominant mutant gene under the control of an inducible promoter can be deprived of a specific protein at a particular time, and the effect can then be followed. Inducible promoters also allow genes to be switched on or off in specific tissues, allowing one to examine the effect of the mutant gene in selected parts of the organism. In the future, techniques for producing dominant negative mutations to inactivate specific genes are likely to be widely used to determine the functions of proteins in higher organisms.

Gain-of-Function Mutations Provide Clues to the Role Genes Play in a Cell or Organism

In the same way that cells can be engineered to express a dominant negative version of a protein, resulting in a loss-of-function phenotype, they can also be engineered to display a novel phenotype through a gain-of-function mutation. Such mutations may confer a novel activity on a particular protein, or they may cause a protein with normal activity to be expressed at an inappropriate time or in the wrong tissue in an animal. Regardless of the mechanism, gain-of-function mutations can produce a new phenotype in a cell, tissue, or organism.

Often, gain-of-function mutants are generated by expressing a gene at a much higher level than normal in cells. Such overexpression can be achieved by coupling a gene to a powerful promoter sequence and placing it on a multicopy plasmid—or integrating it in multiple copies in the genome. In either case, the gene is present in many copies and each copy directs the transcription of unusually large numbers of mRNA molecules. Although the effect that such overexpression has on the phenotype of an organism must be interpreted with caution, this approach has provided invaluable insights into the activity of many genes. In an alternate type of gain-of-function mutation, the mutant protein is made in normal amounts, but is much more active than its normal counterpart. Such proteins are frequently found in tumors, and they have been exploited to study signal transduction pathways in cells (discussed in Chapter 15).

Genes can also be expressed at the wrong time or in the wrong place in an organism—often with striking results (Figure 8–68). Such misexpression is most often accomplished by re-engineering the genes themselves, thereby supplying them with the regulatory sequences needed to alter their expression.

Genes Can Be Redesigned to Produce Proteins of Any Desired Sequence

In studying the action of a gene and the protein it encodes, one does not always wish to make drastic changes—flooding cells with huge quantities of hyperactive protein or eliminating a gene product entirely. It is sometimes useful to make slight changes in a protein’s structure so that one can begin to dissect which portions of a protein are important for its function. The activity of an enzyme, for example, can be studied by changing a single amino acid in its active site. Special techniques are required to alter genes, and their protein products, in such subtle ways. The first step is often the chemical synthesis of a short DNA molecule containing the desired altered portion of the gene’s nucleotide sequence. This synthetic DNA oligonucleotide is hybridized with single-stranded plasmid DNA that contains the DNA sequence to be altered, using conditions that allow imperfectly matched DNA strands to pair (Figure 8–69). The synthetic oligonucleotide will now serve as a primer for DNA synthesis by DNA polymerase, thereby generating a DNA double helix that incorporates the altered sequence into one of its two strands. After transfection, plasmids that carry the fully modified gene sequence are obtained. The appropriate DNA is
then inserted into an expression vector so that the redesigned protein can be produced in the appropriate type of cells for detailed studies of its function. By changing selected amino acids in a protein in this way—a technique called site-directed mutagenesis—one can determine exactly which parts of the polypeptide chain are important for such processes as protein folding, interactions with other proteins, and enzymatic catalysis.

Engineered Genes Can Be Easily Inserted into the Germ Line of Many Animals

When engineering an organism that is to express an altered gene, ideally one would like to be able to replace the normal gene with the altered one so that the function of the mutant protein can be analyzed in the absence of the normal protein. As discussed above, this can be readily accomplished in some haploid, single-celled organisms. We shall see in the following section that much more complicated procedures have been developed that allow gene replacements of this type in mice. Foreign DNA can, however, be rather easily integrated into random positions of many animal genomes. In mammals, for example, linear DNA fragments introduced into cells are rapidly ligated end-to-end by intracellular enzymes to form long tandem arrays, which usually become integrated into a chromosome at an apparently random site. Fertilized mammalian eggs behave like other mammalian cells in this respect. A mouse egg injected with 200 copies of a linear DNA molecule often develops into a mouse containing, in many of its cells, a tandem array of copies of the injected gene integrated at a single random location. In mammals, linear DNA is also rapidly incorporated into the genome by recombination with endogenous DNA. However, the gene introduced is not always inserted on the same chromosome and, in many cases, a single site-directed mutagenesis can produce multiple copies of a mutated gene in the genome. This is accomplished by replicating a mutated plasmid and introducing it into a fertilized egg. Because replication occurs bidirectionally, both strands of the template DNA molecule are replicated. If the plasmid is present in excess, this results in the production of a large number of identical copies of the plasmid. Intradividual differences can then be introduced by means of site-directed mutagenesis, which can alter one or more amino acids in the protein. This process can be repeated to introduce more mutations or to remove one of the original mutations. The use of site-directed mutagenesis to modify the protein-coding region of a gene by site-directed mutagenesis is illustrated in Figure 8–69. (A) A recombinant plasmid containing a gene insert is separated into its two DNA strands. A synthetic oligonucleotide primer corresponding to part of the gene sequence but containing a single altered nucleotide at a predetermined point is added to the single-stranded DNA under conditions that permit less than perfect DNA hybridization. (B) The primer hybridizes to the DNA, forming a single mismatched nucleotide pair. (C) The recombinant plasmid is made double-stranded by in vitro DNA synthesis starting from the primer and sealed by DNA ligase. (D) The double-stranded DNA is introduced into a cell, where it is replicated. Replication using one strand of the template produces a normal DNA molecule, but replication using the other (the strand that contains the primer) produces a DNA molecule carrying the desired mutation. Only half of the progeny cells will end up with a plasmid that contains the desired mutant gene. However, a progeny cell that contains the mutated gene can be identified, separated from other cells, and cultured to produce a pure population of cells, all of which carry the mutated gene. Only one of the many changes that can be engineered in this way is shown here. With an oligonucleotide of the appropriate sequence, more than one amino acid substitution can be made at a time, or one or more amino acids can be inserted or deleted. Although not shown in this figure, it is also possible to create a site-directed mutation by using the appropriate oligonucleotides and PCR (instead of plasmid replication) to amplify the mutated gene.
Gene Targeting Makes It Possible to Produce Transgenic Mice That Are Missing Specific Genes

If a DNA molecule carrying a mutated mouse gene is transferred into a mouse cell, it usually inserts into the chromosomes at random, but about once in a thousand times, it replaces one of the two copies of the normal gene by homologous recombination. By exploiting these rare “gene targeting” events, any specific gene can be altered or inactivated in a mouse cell by a direct gene replacement. In the special case in which the gene of interest is inactivated, the resulting animal is called a “knockout” mouse.

The technique works as follows: in the first step, a DNA fragment containing a desired mutant gene (or a DNA fragment designed to interrupt a target gene) is inserted into a vector and then introduced into a special line of embryo-derived mouse stem cells, called embryonic stem cells or ES cells, that grow in cell culture and are capable of producing cells of many different tissue types. After a period of cell proliferation, the rare colonies of cells in which a homologous recombination event is likely to have caused a gene replacement to occur are isolated. The correct colonies among these are identified by PCR or by Southern blotting: they contain recombinant DNA sequences in which the inserted fragment has replaced all or part of one copy of the normal gene. In the second step, individual cells from the identified colony are taken up into a fine micropipette and injected into an early mouse embryo. The transfected embryo-derived stem cells collaborate with the cells of the host embryo to produce a normal-looking mouse; large parts of this chimeric animal, including—in favorable cases—cells of the germ line, often derive from the artificially altered stem cells (Figure 8–70).

The mice with the transgene in their germ line are bred to produce both a male and a female animal, each heterozygous for the gene replacement (that is, they have one normal and one mutant copy of the gene). When these two mice are in turn mated, one-fourth of their progeny will be homozygous for the altered gene. Studies of these homozygotes allow the function of the altered gene—or the effects of eliminating a gene activity—to be examined in the absence of the corresponding normal gene.

The ability to prepare transgenic mice lacking a known normal gene has been a major advance, and the technique is now being used to dissect the functions of a large number of mammalian genes (Figure 8–71). Related techniques can be used to produce conditional mutants, in which a selected gene becomes disrupted in a specific tissue at a certain time in development. The strategy takes advantage of a site-specific recombination system to excise—and thus disable—
the target gene in a particular place or at a particular time. The most common of these recombination systems called Cre/lox, is widely used to engineer gene replacements in mice and in plants (see Figure 5–82). In this case the target gene in ES cells is replaced by a fully functional version of the gene that is flanked by a pair of the short DNA sequences, called lox sites, that are recognized by the Cre recombinase protein. The transgenic mice that result are phenotypically normal. They are then mated with transgenic mice that express the Cre recombinase gene under the control of an inducible promoter. In the specific cells or tissues in which Cre is switched on, it catalyzes recombination between the lox sequences—excising a target gene and eliminating its activity. Similar recombination systems are used to generate conditional mutants in Drosophila (see Figure 21–48).

Figure 8–70 Summary of the procedures used for making gene replacements in mice. In the first step (A), an altered version of the gene is introduced into cultured ES (embryonic stem) cells. Only a few rare ES cells will have their corresponding normal genes replaced by the altered gene through a homologous recombination event. Although the procedure is often laborious, these rare cells can be identified and cultured to produce many descendants, each of which carries an altered gene in place of one of its two normal corresponding genes. In the next step of the procedure (B), these altered ES cells are injected into a very early mouse embryo; the cells are incorporated into the growing embryo, and a mouse produced by such an embryo will contain some somatic cells (indicated by orange) that carry the altered gene. Some of these mice will also contain germ-line cells that contain the altered gene. When bred with a normal mouse, some of the progeny of these mice will contain the altered gene in all of their cells. If two such mice are in turn bred (not shown), some of the progeny will contain two altered genes (one on each chromosome) in all of their cells.

If the original gene alteration completely inactivates the function of the gene, these mice are known as knockout mice. When such mice are missing genes that function during development, they often die with specific defects long before they reach adulthood. These defects are carefully analyzed to help decipher the normal function of the missing gene.
Transgenic Plants Are Important for Both Cell Biology and Agriculture

When a plant is damaged, it can often repair itself by a process in which mature differentiated cells “dedifferentiate,” proliferate, and then redifferentiate into other cell types. In some circumstances the dedifferentiated cells can even form an apical meristem, which can then give rise to an entire new plant, including gametes. This remarkable plasticity of plant cells can be exploited to generate transgenic plants from cells growing in culture.

When a piece of plant tissue is cultured in a sterile medium containing nutrients and appropriate growth regulators, many of the cells are stimulated to proliferate indefinitely in a disorganized manner, producing a mass of relatively undifferentiated cells called a callus. If the nutrients and growth regulators are carefully manipulated, one can induce the formation of a shoot and then root apical meristems within the callus, and, in many species, a whole new plant can be regenerated.

Callus cultures can also be mechanically dissociated into single cells, which will grow and divide as a suspension culture. In several plants—including tobacco, petunia, carrot, potato, and Arabidopsis—a single cell from such a suspension culture can be grown into a small clump (a clone) from which a whole plant can be regenerated. Such a cell, which has the ability to give rise to all parts of the organism, is considered totipotent. Just as mutant mice can be derived by genetic manipulation of embryonic stem cells in culture, so transgenic plants can be created from single totipotent plant cells transfected with DNA in culture (Figure 8–72).

The ability to produce transgenic plants has greatly accelerated progress in many areas of plant cell biology. It has had an important role, for example, in isolating receptors for growth regulators and in analyzing the mechanisms of morphogenesis and of gene expression in plants. It has also opened up many new possibilities in agriculture that could benefit both the farmer and the consumer. It has made it possible, for example, to modify the lipid, starch, and protein storage reserved in seeds, to impart pest and virus resistance to plants, and to create modified plants that tolerate extreme habitats such as salt marshes or water-stressed soil.

Many of the major advances in understanding animal development have come from studies on the fruit fly Drosophila and the nematode worm Caenorhabditis elegans, which are amenable to extensive genetic analysis as well as to experimental manipulation. Progress in plant developmental biology has, in the past, been relatively slow by comparison. Many of the plants that have proved most amenable to genetic analysis—such as maize and tomato—have long life cycles and very large genomes, making both classical and molecular genetic analysis time-consuming. Increasing attention is consequently being paid to a fast-growing small weed, the common wall cress (Arabidopsis thaliana), which has several major advantages as a “model plant” (see Figures 1–46 and 21–107). The relatively small Arabidopsis genome was the first plant genome to be completely sequenced.

Large Collections of Tagged Knockouts Provide a Tool for Examining the Function of Every Gene in an Organism

Extensive collaborative efforts are underway to generate comprehensive libraries of mutations in several model organisms, including S. cerevisiae, C. elegans, Drosophila, Arabidopsis, and the mouse. The ultimate aim in each case is to produce a collection of mutant strains in which every gene in the organism has either been systematically deleted, or altered such that it can be conditionally disrupted. Collections of this type will provide an invaluable tool for investigating gene function on a genomic scale. In some cases, each of the individual mutants within the collection will sport a distinct molecular tag—a unique DNA sequence designed to make identification of the altered gene rapid and routine.

In S. cerevisiae, the task of generating a set of 6000 mutants, each missing
only one gene, is made simpler by yeast’s propensity for homologous recombination. For each gene, a “deletion cassette” is prepared. The cassette consists of a special DNA molecule that contains 50 nucleotides identical in sequence to each end of the targeted gene, surrounding a selectable marker. In addition, a special “barcode” sequence tag is embedded in this DNA molecule to facilitate the later rapid identification of each resulting mutant strain (Figure 8–73). A large mixture of such gene knockout mutants can then be grown under various selective test conditions—such as nutritional deprivation, temperature shift, or the presence of various drugs—and the cells that survive can be rapidly identified by their unique sequence tags. By assessing how well each mutant in the mixture fares, one can begin to assess which genes are essential, useful, or irrelevant for growth under various conditions.

The challenge in deriving information from the study of such yeast mutants lies in deducing a gene’s activity or biological role based on a mutant phenotype.

Figure 8–72 A procedure used to make a transgenic plant. (A) Outline of the process. A disc is cut out of a leaf and incubated in culture with Agrobacteria that carry a recombinant plasmid with both a selectable marker and a desired transgene. The wounded cells at the edge of the disc release substances that attract the Agrobacteria and cause them to inject DNA into these cells. Only those plant cells that take up the appropriate DNA and express the selectable marker gene survive to proliferate and form a callus. The manipulation of growth factors supplied to the callus induces it to form shoots that subsequently root and grow into adult plants carrying the transgene. (B) The preparation of the recombinant plasmid and its transfer to plant cells. An Agrobacterium plasmid that normally carries the T-DNA sequence is modified by substituting a selectable marker (such as the kanamycin-resistance gene) and a desired transgene between the 25-nucleotide-pair T-DNA repeats. When the Agrobacterium recognizes a plant cell, it efficiently passes a DNA strand that carries these sequences into the plant cell, using the special machinery that normally transfers the plasmid’s T-DNA sequence.
Some defects—an inability to live without histidine, for example—point directly to the function of the wild-type gene. Other connections may not be so obvious. What might a sudden sensitivity to cold indicate about the role that a particular gene plays in the yeast cell? Such problems are even greater in organisms that are more complex than yeast. The loss of function of a single gene in the mouse, for example, can affect many different tissue types at different stages of development—whereas the loss of other genes is found to have no obvious effect. Adequately characterizing mutant phenotypes in mice often requires a thorough examination, along with extensive knowledge of mouse anatomy, histology, pathology, physiology, and complex behavior.

The insights generated by examination of mutant libraries, however, will be great. For example, studies of an extensive collection of mutants in *Mycoplasma genitalium*—the organism with the smallest known genome—have identified the minimum complement of genes essential for cellular life. Analysis of the mutant pool suggests that 265–350 of the 480 protein-coding genes in *M. genitalium* are required for growth under laboratory conditions. Approximately 100 of these essential genes are of unknown function, which suggests that a surprising number of the basic molecular mechanisms that underlie cellular life have yet to be discovered.

Summary

Genetics and genetic engineering provide powerful tools for the study of gene function in both cells and organisms. In the classical genetic approach, random mutagenesis is coupled with screening to identify mutants that are deficient in a particular biological process. These mutants are then used to locate and study the genes responsible for that process.

Gene function can also be ascertained by reverse genetic techniques. DNA engineering methods can be used to mutate any gene and to re-insert it into a cell's chromosomes so that it becomes a permanent part of the genome. If the cell used for this gene transfer is a fertilized egg (for an animal) or a totipotent plant cell in culture, transgenic organisms can be produced that express the mutant gene and pass it on to their progeny. Especially important for cell biology is the ability to alter cells and organisms in highly specific ways—allowing one to discern the effect on the cell or the organism of a designed change in a single protein or RNA molecule.

Many of these methods are being expanded to investigate gene function on a genome-wide scale. Technologies such as DNA microarrays can be used to monitor the expression of thousands of genes simultaneously, providing detailed, comprehensive snapshots of the dynamic patterns of gene expression that underlie complex cellular processes. And the generation of mutant libraries in which every gene in an organism has been systematically deleted or disrupted will provide an invaluable tool for exploring the role of each gene in the elaborate molecular collaboration that gives rise to life.
References

General

Isolating Cells and Growing Them in Culture

Fractionation of Cells

Isolating, Cloning, and Sequencing DNA

Analyzing Protein Structure and Function

Studying Gene Expression and Function