

Nobel Prize for DNA polymerase I

Comparison of DNA Polymerases of E. coli

	2010/01/01	DNA polymerase
and the second second second	1	
Structural gene*	polA	
Subunits (number of different types)	1	
М,	103,000	
3'→5' Exonuclease (proofreading)	Yes	
5'→3' Exonuclease	Yes	
Polymerization rate (nucleotides/sec)	16-20	
Processivity (nucleotides added before polymerase dissociates)	3-200	
Mutant viable?	Yes!	

		DNA polymer	rase
	- P	8	
tructural gene*	polA	po/B	
ubunits (number of different types)	1	≥4	
1,	103,000	88,000 [†]	
3'→5' Exonuclease (proofreading)	Yes	Yes	
5'→3' Exonuclease	Yes	No	
Polymerization rate (nucleotides/sec)	16-20	40	
Processivity (nucleotides added before polymerase dissociates)	3-200	1,500	
Mutant viable?	Yes!	Yes!	

Nobel Prize for DNA polymerase I

Comparison of DNA Polymerases of E. coli

		DNA polym	erase
	- D	0	(1)
Structural gene*	polA	po/B	polC (dnaE)
Subunits (number of different types)	1	≥4	≥10
М,	103,000	88,000 [†]	830,000
3'→5' Exonuclease (proofreading)	Yes	Yes	Yes
5'→3' Exonuclease	Yes	No	No
Polymerization rate (nucleotides/sec)	16-20	40	250-1,000
Processivity (nucleotides added before polymerase dissociates)	3-200	1,500	≥500,000
Mutant viable?	Yes!	Yes!	No

	DNA polymerase		
	Т. П.	0	111
Structural gene*	polA	po/B	po/C (dnaE)
Subunits (number of different types)	1	≥4	≥10
M,	103,000	88,000 [†]	830,000
3'→5' Exonuclease (proofreading)	Yes	Yes	Yes
5'→3' Exonuclease	Yes	No	No
Polymerization rate (nucleotides/sec)	16-20	40	250-1,000
Processivity (nucleotides added before polymerase dissociates)	3-200	1,500	≥500,000
Mutant viable?	Yes!	Yes!	No
Function	re	oair	replicatio

Greek name	HUGO name	Class	Other names	Proposed main function
a (sipha) β (beta) γ (gamma) δ (deta) ξ (deta) φ (spailon) ξ (zeta) φ (theta) φ	POLA POLB POLG POLD POLE POLZ POLH POLA POLM POLK POLK POLM POLK POLM POLS REVIL TDT	B XA B B B Y A Y Y X X X Y X X Y X	POL1 MIP1 POL3 POL2 REV3 RAD30, XPV mu3308, eta RAD308 DinB1, theta POL4, beta2 TRF4, knppa REV1	DNA replication Base excision repair Mitochondrial replication DNA replication Bypass synthesis Bypass synthesis DNA ropair Bypass synthesis Base excision repair Non-homologous end joining Sister chromatic cohesion Bypass synthesis Antigen receptor diversity
olus many r Pol o Mass 300	nore κ β ,000 40,000	δ 170-23	ε 0,000 250,00	γ (mitochondrial) 00 180-300,000

