Genomes summary

1. >930 bacterial genomes sequenced.
2. Circular. Genes densely packed.
3. 2-10 Mbases, 470-7,000 genes
4. Genomes of >200 eukaryotes (45 "higher") sequenced.
5. Linear chromosomes
6. On average, $\sim 50 \%$ of gene functions "known".
7. Human genome: $<40,000$ genes code for $>120,000$ proteins.
Large gene families (e.g. 500 protein kinases)
98\% of human DNA is noncoding.
~3\% of human DNA = simple repeats (satellites, minisatellites, microsatellites)
$\sim 50 \%$ of DNA = mobile elements (DNA transposons, retrotransposons (LTR and nonLTR) \& pseudogenes)

Bacterial genome sizes

Predicted genes in bacterial species
Mycoplasma genitalium 470
Mycoplasma mycoides 985
E. coli 4,288
B. anthracis 5,508
P. aeruginosa 5,570

Mycobacterium leprae 1,604
Mycobacterium tuberculosis 3,995

+ ~930 sequenced microbial genomes
(http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi)

Small and large

	Genome sizes			
	Table 20.1 Genome Sizes and Numbers of Genes			
	Organism	Genome Size	Estimated Number of Genes	Genes per Mb
	H. influenzae (bacterium)	$1.8 \mathrm{Mb}^{*}$	1,700	950
	$\begin{aligned} & \text { S. cerevisiae } \\ & \text { (yeast) } \end{aligned}$	12 Mb	6,000	500
	C. elegans (nematode)	97 Mb	19,000	200
	A. thaliana (plant)	100 Mb	25,000	200
	D. melanogaster (fruit fly)	180 Mb	13,000	100
	H. sapiens (human) * $\mathrm{Mb}=$ million base p	$3,200 \mathrm{Mb}$	30,000-40,000	10
	Gene density down in mammals			

Bacterial genomes are circular and densely packed with genes - 1

E. coli. Genes (circles 1 \& 2).

B. anthracis. Genes (circles 1 \& 2).

Bacterial genomes are circular and densely packed with genes - 2

M. tuberculosis (4.41 MB). Genes (circles $1 \& 2$).

M. leprae (4.41 MB).

Genes (circles 1 \& 2),
1116 pseudogenes (circles 3 \& 4).

Representative gene arrangements in 50 kb segments of yeast, fly and human DNA.

Few yeast genes contain introns (exons are blue). Genes above and below the line are transcribed in opposite directions.

Numbers and types of genes in different eukaryotes

About half the genes encode proteins of unknown function.

Human genome: <2\% ORFs \& 48\% repeats

Human genome:
<40,000 genes
Average ~3 proteins/gene
98% of DNA is noncoding
Individuals 99.9\% identical (1 difference/1000 bp means many markers for mapping).
Large families of repeats.
481 sequences $>200 \mathrm{bp}$ that are absolutely conserved in mouse.
Large gene families (E.g. ~500 Ser/Thr protein kinases many Zn^{2+} fingers, etc.)

TABLE 10-1 Major Classes of Eukaryotic DNA and Their Representation in the Human Cenome			
Class	Lengrth	Copy Number in Human Genome	Fraction of Human Genome, $\%$
Proteincoding genes			
Soliary gomes	Variulle	1	$-15 *(0.8)$
Duplicated or diverged penes in gene families	Varable	2-1000	$-15 *(0.8)$
Tandenily trpeated gree encoulung tRNAs, tRNAs, mRNAs, and histoncs	Varable	20-500	0.3
Repertious DNA			
Simplesecquene DNA	1-500 be	Variable	3
leterspersed reperss			
DNA manposeas	2-3 kb	300,000	3
ITR retrotrampowns	6-11 kb	440,000	8
Non-LTK retrotampowes			
LINE,	6-8 kt	860,000	21
SINEs	100-500 bp	1,600,060	13
Processed peudogener	Varable	$1-100$	-0.4
Unclasafed spoce DNA	Variable	n.a. ${ }^{\text {a }}$	-25
 is hased on corren methods for idertifying pros in the hamin proesc wequence ad may by an underestimatr. -Noe applatible			

Human genome: individuals 99.9\% identical

For every 1000 people . . .
Sequencing revealed one major allele for most genes in populations

Human populations have not been genetically isolated for very long (~2-3 M years)

Many variations have not had time to spread throughout populations.

Human genome: individuals $\mathbf{0 . 1 \%}$ different

For every person . . .
Lots of variation!
$3.2 \times 10^{9} \mathrm{bp} /$ genome $\times 0.001$ changes $/ \mathrm{bp}=$

Human genome: individuals 0.1\% different

For every person . . .
Lots of variation!
$3.2 \times 10^{9} \mathrm{bp} /$ genome $\times 0.001$ changes $/ \mathrm{bp}=$ 3.2×10^{6} changes/genome

Human genome: individuals $\mathbf{0 . 1 \%}$ different

For every person . . .
Lots of variation!
$3.2 \times 10^{9} \mathrm{bp} /$ genome $\times 0.001$ changes $/ \mathrm{bp}=$ 3.2×10^{6} changes/genome

Two major types of variation
SNPs
Repeated DNA - short to long repeats
Variations produce RFLPs (Restriction Fragment Length Polymorphisms)!

SNPs

Single Nucleotide Polymorphisms (Changes of a single base)
Some are neutral
Some alter gene function
Identifying SNPs
Phenotype (disease), e.g Sickle cell anemia
Sequencing genes/cDNAs
Restriction digest

RFLPs

Restriciton Fragment Length Polymorphisms (Changes of restriction enzyme sites)

RFLPs

Restriciton Fragment Length Polymorphisms (Changes of restriction enzyme sites)

For every random 3×10^{6} SNPs:
$\sim 1 / 256$ will be in 4 -base restriction sites
--> ~ 10^{4} RFLPs for EACH four-base cutter!
$\sim 1 / 4096$ will be in 6-base restriction sites
--> $\sim 7.5 \times 10^{2}$ RFLPs for EACH six-base cutter!
Lots of markers (RFLPs) to map genes by linkage to RFLPs

Human genome: 48\% repeats

Human genome:
<40,000 genes
Average ~3 proteins/gene
95% of DNA is noncoding
Individuals 99.9\% identical (1 difference/1000 bp means many markers for mapping).
Large families of repeats. Satellites (micro, mini and conventional)
Transposons
Retrotransposons

Major Classes of Eukaryotic DNA and Their Representation in the Human Genome			
Class	Lengrh	Copy Number is Human Genome	Fraction of Human Genome. $\%$
Protein coding genes			
Solitary geme	Varuitle	1	$-15 \times(0.8){ }^{\text {P }}$
Duphicated or diverged genes in gene families	Varable	2-1000	-15* (0.8)t
Tandemily tupated gene encoling rRNAs, tRNAs, suRNAs, and histoocs	Varable	20-500	0.3
Repertious DNA			
Simple sequerke DNA	1-500 be	Variable	3
loterspered repers			
DNA mansposeas	2-3 kb	300,000	3
1TR retrotrampowns	6-11 kb	440,000	8
Non-LTK retrotampowes			
LINES	6-8 kt	860,000	21
SINEs	100-600 bp	1,600,060	13
Processed prewtogener	Varable	1-100	-04
Unckasied spuer DNA	Variable	n.a. ${ }^{1}$	-25
 'Na uplathe.			

Satellites

Microsatellites: 1-13 bps in ~150 bp arrays
Minisatellites: $15-100 \mathrm{bps}$ in $1-5 \mathrm{~kb}$ arrays
Satellites: 14-500 bps in 20-100 kb arrays

Origins of length polymorphisms in simplesequence repeats.

Generation of length differences by unequal crossing over in meiosis

"Southern" blotting detects DNA sequences by hybridization

1. Digest DNA using restriction enzyme(s)
2. Run gel
3. Transfer DNA from gel to (nitrocellulose) paper.
4. Denature DNA, hybridize probe DNA, and wash off excess probe.
5. Detect the probe on the
 paper. E.g. by autoradiography.

Different distributions of minisatellites

Three repeats (a, b, c) in 3 people $(1,2,3)$

Southern blot of Hinfl-digested DNA

RFLPs -- DNA "finger print" in a murder case

Southern blot of DNA samples digested with a restriction enzyme

Human genome: 48\% repeats

Human genome:
<40,000 genes
Average ~ 3 proteins/gene
95\% of DNA is noncoding
Individuals 99.9% identical (1 difference/1000 bp means many markers for mapping).
Large families of repeats. Satellites (micro, mini and conventional)
Transposons
Retrotransposons

Class	Lengch	Copy Number is Human Genome	Fraction of Human Genome. \%
Protein coding genes			
Soliary gome	Varuible	1	$-15 *(0.8)$
Duphated or diverged penes in gene families	Varable	2-1000	$-15 *(0.8){ }^{\text {r }}$
Tandewily tepeated gene encoling rRNAs, tRNAs, snRNAs, and histones	Varuble	20-500	4.3
Repetaious DNA			
Simpl- wequerike DNA	1-500 be	Variable	3
leterspersed repers			
DNA mamposens	2-3 kb	300,000	3
ITR retrotrampowns	6-11 kb	440,000	8
Non-LTK retrotrampowns			
IINEs	6-8 kt	860,000	21
SINE,	100-300 bp	1,600,060	13
Procesed preutogener	Varable	1-100	-04
Unctesifed space DNA	Varable	n.a. ${ }^{1}$	-25
*Cumglete tranatipben anite, indioling murune. is hosed om corven methods for idertifting pres io the hamin pmoer wequence and may by an underestimatr. -Noe appleable sormac E. S. Linder et al., 2001, Natare 409:860.			

Two major classes of mobile elements

Proks and euks DNA intermediate

Eukaryotes
RNA intermediate

Some consequences of repeat sequences in eukaryotes

Genomic diversity in individuals and species. The most common retrotransposon sequences in the human genome are derived from endogenous retroviruses (ERVs). Most of these >440,000 sequences consist only of isolated LTRs, which arise from recombination between the ends.

Gene families arise by duplication and divergence.
"Pseudogenes" arise from RT acting on mRNAs.
New genes arise by "exon shuffling".

Exon shuffling may create new proteins in eukaryotes

Mechanism 1: Recombination between homologous interspersed repeats in the introns of separate genes would produce a new combination of exons.

Exon shuffling may create new proteins in eukaryotes

Mechanism 2:
Transposition of an exon
(a) DNA hopping of flanking transposons
(b) Reverse transcription of a LINE RNA extending into the 3^{\prime} exon of gene 1 can produce a DNA that gives gene 2 a new 3' exon upon integration.

Possible results of exon shuffling

1. Modular proteins (with alternate splicing patterns). E.g. Fibronectin gene and mRNA.

2. Separate proteins that form a complex in one organism are sometimes fused into a single polypeptide chain in another organism.
C. elegans Ade 5,7,8

Genomes summary

1. >930 bacterial genomes sequenced.
2. Circular. Genes densely packed.
3. 2-10 Mbases, 470-7,000 genes
4. Genomes of >200 eukaryotes (45 "higher") sequenced.
5. Linear chromosomes
6. On average, $\sim 50 \%$ of gene functions "known".
7. Human genome: $<40,000$ genes code for $>120,000$ proteins.
Large gene families (e.g. 500 protein kinases) 98% of human DNA is noncoding.
~3\% of human DNA = simple repeats (satellites, minisatellites, microsatellites)
$\sim 50 \%$ of DNA $=$ mobile elements (DNA transposons, retrotransposons (LTR and nonLTR) \& pseudogenes)

Model for DNA transposition in bacteria

Structure of a eukaryotic LTR retrotransposon

Long Interspersed Elements: encode proteins including RT Short Interspersed Elements: deletion of protein-coding region

ORF1=RNA binding protein; ORF2=RT and endonuclease.

Experiments with yeast Ty elements demonstrated an RNA intermediate

Introns lost in transposed Tys!

Summary: Two major classes of mobile elements

Proks and euks DNA intermediate

Eukaryotes RNA intermediate LINEs and SINEs

